×

zbMATH — the first resource for mathematics

Parameter matching using adaptive synchronization of two Chua’s oscillators. (English) Zbl 1304.34093

MSC:
34C60 Qualitative investigation and simulation of ordinary differential equation models
34D06 Synchronization of solutions to ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
93C40 Adaptive control/observation systems
94C05 Analytic circuit theory
34C28 Complex behavior and chaotic systems of ordinary differential equations
Software:
Matlab; SPICE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/j.matcom.2006.01.006 · Zbl 1161.37317 · doi:10.1016/j.matcom.2006.01.006
[2] DOI: 10.1109/31.55064 · Zbl 0706.94026 · doi:10.1109/31.55064
[3] DOI: 10.1142/S0218127492000811 · Zbl 0875.94133 · doi:10.1142/S0218127492000811
[4] DOI: 10.1142/S0218126694000090 · doi:10.1142/S0218126694000090
[5] DOI: 10.1142/S0218127496001946 · doi:10.1142/S0218127496001946
[6] DOI: 10.1109/82.246162 · doi:10.1109/82.246162
[7] Dawson D. M., Nonlinear Control of Electric Machinery (1998)
[8] DOI: 10.1016/S0167-2789(99)00226-2 · Zbl 0954.34037 · doi:10.1016/S0167-2789(99)00226-2
[9] DOI: 10.1109/81.633879 · doi:10.1109/81.633879
[10] DOI: 10.1142/S0218127400001869 · Zbl 0972.93005 · doi:10.1142/S0218127400001869
[11] DOI: 10.1109/81.883337 · Zbl 1046.93506 · doi:10.1109/81.883337
[12] DOI: 10.1016/j.chaos.2005.08.101 · Zbl 1142.37326 · doi:10.1016/j.chaos.2005.08.101
[13] DOI: 10.1142/S0218127402005388 · Zbl 1047.34060 · doi:10.1142/S0218127402005388
[14] DOI: 10.1109/31.52759 · doi:10.1109/31.52759
[15] DOI: 10.1142/S0218127494001295 · Zbl 0875.93219 · doi:10.1142/S0218127494001295
[16] Kacar F., Radioengineering 20 pp 627– (2011)
[17] Kilic R., World Scientific Series on Nonlinear Science: Series A, in: A Practical Guide for Studying Chua’s Circuits (2010) · doi:10.1142/7538
[18] DOI: 10.1063/1.3671969 · Zbl 1317.34087 · doi:10.1063/1.3671969
[19] DOI: 10.1142/S0218127496000266 · Zbl 0875.93181 · doi:10.1142/S0218127496000266
[20] DOI: 10.1109/81.974871 · doi:10.1109/81.974871
[21] DOI: 10.1016/j.chaos.2005.02.005 · Zbl 1093.93535 · doi:10.1016/j.chaos.2005.02.005
[22] Liu X., Int. J. Circuit Th. Appl. 38 pp 631– (2010)
[23] DOI: 10.1109/TCS.1984.1085459 · Zbl 0551.94020 · doi:10.1109/TCS.1984.1085459
[24] DOI: 10.1109/82.246172 · doi:10.1109/82.246172
[25] Narendra K., Stable Adaptive Systems (2005) · Zbl 1217.93081
[26] Naseh M., Int. J. Electric. Electron. Sci. Eng. 1 pp 118– (2007)
[27] DOI: 10.1109/TCS.1983.1085290 · doi:10.1109/TCS.1983.1085290
[28] DOI: 10.1142/S0218127496000278 · Zbl 0871.94005 · doi:10.1142/S0218127496000278
[29] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[30] DOI: 10.1109/82.246161 · doi:10.1109/82.246161
[31] Sastry S., Adaptive Control: Stability, Convergence and Robustness (2011)
[32] DOI: 10.1515/FREQ.1998.52.9-10.196 · doi:10.1515/FREQ.1998.52.9-10.196
[33] DOI: 10.1002/cta.510 · doi:10.1002/cta.510
[34] Slotine J.-J. E., Applied Nonlinear Control (1991)
[35] DOI: 10.1007/BF00240490 · doi:10.1007/BF00240490
[36] DOI: 10.1142/S0218127404009119 · Zbl 1067.94597 · doi:10.1142/S0218127404009119
[37] DOI: 10.1142/S0218127402004589 · Zbl 1047.34061 · doi:10.1142/S0218127402004589
[38] DOI: 10.1142/S0218127496000187 · Zbl 0875.93182 · doi:10.1142/S0218127496000187
[39] DOI: 10.1016/j.cnsns.2008.12.023 · Zbl 1221.34165 · doi:10.1016/j.cnsns.2008.12.023
[40] DOI: 10.1016/S0895-7177(01)00157-1 · Zbl 1022.37049 · doi:10.1016/S0895-7177(01)00157-1
[41] DOI: 10.1016/0016-0032(94)90088-4 · Zbl 0835.34044 · doi:10.1016/0016-0032(94)90088-4
[42] DOI: 10.1142/S0218127406016550 · Zbl 1142.34387 · doi:10.1142/S0218127406016550
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.