Meeks, William H. III.; Pérez, Joaquín; Ros, Antonio Properly embedded minimal planar domains. (English) Zbl 1315.53008 Ann. Math. (2) 181, No. 2, 473-546 (2015). It follows from the minimal surface equation that the plane, the catenoid and the helicoid are examples of properly embedded, minimal planar domains in \({\mathbb R}^3\). And it is well known that those surfaces are of finite topology. A planar domain is a connected surface that embeds in the plane. Around 1860, Riemann discovered examples of properly embedded, minimal planar domains in \({\mathbb R}^3\) with infinite topology. These examples, called the Riemann minimal examples by the authors, appear in a one-parameter family \({\mathcal R}_t, t \in (0, \infty)\), and satisfy the property that, after a rotation, each \({\mathcal R}_t\) intersects every horizontal plane in a circle or in a line. Moreover the \({\mathcal R}_t\) have natural limits being a vertical catenoid as \(t \to 0\) and a vertical helicoid as \(t \to \infty\).In this paper, the authors analyze the Riemann minimal examples and prove that the only connected properly embedded, minimal planar domains in \({\mathbb R}^3\) with infinite topology are the Riemann minimal examples. From this result together with previously well-known facts, the authors complete the classification of properly embedded, minimal planar domains in \({\mathbb R}^3\). Namely, they show that, up to scaling and rigid motion, any connected, properly embedded, minimal planar domain in \({\mathbb R}^3\) is a plane, a helicoid, a catenoid or one of the Riemann minimal examples. In particular, for every such surface, there exists a foliation of \({\mathbb R}^3\) by parallel planes, each of which intersects the surface transversely in a connected curve that is a circle or a line. Reviewer: Gabjin Yun (Yongin) Cited in 17 Documents MSC: 53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature 53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.) Keywords:curvature estimates; finite total curvature; index of stability; Jacobi function; KdV hierarchy; Korteweg-de Vries equation; limit tangent plane at infinity; minimal surface; Shiffman function; stability PDF BibTeX XML Cite \textit{W. H. III. Meeks} et al., Ann. Math. (2) 181, No. 2, 473--546 (2015; Zbl 1315.53008) Full Text: DOI arXiv OpenURL References: [1] J. L. Barbosa and M. do Carmo, ”On the size of a stable minimal surface in \(R^3\),” Amer. J. Math., vol. 98, iss. 2, pp. 515-528, 1976. · Zbl 0332.53006 [2] J. Bernstein and C. Breiner, ”Conformal structure of minimal surfaces with finite topology,” Comment. Math. Helv., vol. 86, iss. 2, pp. 353-381, 2011. · Zbl 1213.53011 [3] J. C. Borda, ”Eclaircissement sur les méthodes de trouver ler courbes qui jouissent de quelque propiété du maximum ou du minimum,” Mém. Acad. Roy. Sci. Paris, pp. 551-565, 1770. [4] M. Callahan, D. Hoffman, and W. H. Meeks III, ”The structure of singly-periodic minimal surfaces,” Invent. Math., vol. 99, iss. 3, pp. 455-481, 1990. · Zbl 0695.53005 [5] S. S. Chern and C. K. Peng, ”Lie groups and KdV equations,” Manuscripta Math., vol. 28, iss. 1-3, pp. 207-217, 1979. · Zbl 0408.35074 [6] T. H. Colding, C. De Lellis, and W. P. Minicozzi II, ”Three circles theorems for Schrödinger operators on cylindrical ends and geometric applications,” Comm. Pure Appl. Math., vol. 61, iss. 11, pp. 1540-1602, 2008. · Zbl 1170.35035 [7] T. H. Colding and W. P. Minicozzi II, ”The space of embedded minimal surfaces of fixed genus in a \(3\)-manifold V; Fixed genus,” Ann. of Math., vol. 181, iss. 1, pp. 1-153, 2015. · Zbl 1322.53059 [8] T. H. Colding and W. P. Minicozzi II, ”The space of embedded minimal surfaces of fixed genus in a 3-manifold. I. Estimates off the axis for disks,” Ann. of Math., vol. 160, iss. 1, pp. 27-68, 2004. · Zbl 1070.53031 [9] T. H. Colding and W. P. Minicozzi II, ”The space of embedded minimal surfaces of fixed genus in a 3-manifold. II. Multi-valued graphs in disks,” Ann. of Math., vol. 160, iss. 1, pp. 69-92, 2004. · Zbl 1070.53032 [10] T. H. Colding and W. P. Minicozzi II, ”The space of embedded minimal surfaces of fixed genus in a 3-manifold. III. Planar domains,” Ann. of Math., vol. 160, iss. 2, pp. 523-572, 2004. · Zbl 1076.53068 [11] T. H. Colding and W. P. Minicozzi II, ”The space of embedded minimal surfaces of fixed genus in a 3-manifold. IV. Locally simply connected,” Ann. of Math., vol. 160, iss. 2, pp. 573-615, 2004. · Zbl 1076.53069 [12] P. Collin, ”Topologie et courbure des surfaces minimales proprement plongées de \(\mathbb R^3\),” Ann. of Math., vol. 145, iss. 1, pp. 1-31, 1997. · Zbl 0886.53008 [13] P. Collin, R. Kusner, W. H. Meeks III, and H. Rosenberg, ”The topology, geometry and conformal structure of properly embedded minimal surfaces,” J. Differential Geom., vol. 67, iss. 2, pp. 377-393, 2004. · Zbl 1098.53006 [14] A. Douady and R. Douady, ”Changements de cadres á partir des surfaces minimales,” Cahier de DIDIREM, vol. 23, 1994. · Zbl 0934.30023 [15] N. Ejiri and M. Kotani, ”Index and flat ends of minimal surfaces,” Tokyo J. Math., vol. 16, iss. 1, pp. 37-48, 1993. · Zbl 0856.53013 [16] L. Euler, Methodus Inveniendi Lineas Curvas Maximi Minimive Propietate Gaudeates Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti, Cambridge, MA: Harvard Univ. Press, 1969. · Zbl 0788.01072 [17] Y. Fang, ”On minimal annuli in a slab,” Comment. Math. Helv., vol. 69, iss. 3, pp. 417-430, 1994. · Zbl 0819.53006 [18] C. Frohman and W. H. Meeks III, ”The ordering theorem for the ends of properly embedded minimal surfaces,” Topology, vol. 36, iss. 3, pp. 605-617, 1997. · Zbl 0878.53008 [19] F. Gesztesy and R. Weikard, ”Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies-an analytic approach,” Bull. Amer. Math. Soc., vol. 35, iss. 4, pp. 271-317, 1998. · Zbl 0909.34073 [20] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second ed., New York: Springer-Verlag, 1983, vol. 224. · Zbl 0562.35001 [21] R. E. Goldstein and D. M. Petrich, ”The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane,” Phys. Rev. Lett., vol. 67, iss. 23, pp. 3203-3206, 1991. · Zbl 0990.37519 [22] P. Griffiths and J. Harris, Principles of Algebraic Geometry, New York: Wiley-Interscience [John Wiley & Sons], 1978. · Zbl 0408.14001 [23] L. Hauswirth and F. Pacard, ”Higher genus Riemann minimal surfaces,” Invent. Math., vol. 169, iss. 3, pp. 569-620, 2007. · Zbl 1129.53009 [24] D. Hoffman and W. H. Meeks III, ”The strong halfspace theorem for minimal surfaces,” Invent. Math., vol. 101, iss. 2, pp. 373-377, 1990. · Zbl 0722.53054 [25] D. Hoffman, M. Traizet, and B. White, Helicoidal minimal surfaces of precribed genus II. · Zbl 1356.53010 [26] M. Weber, D. Hoffman, and M. Wolf, ”An embedded genus-one helicoid,” Ann. of Math., vol. 169, iss. 2, pp. 347-448, 2009. · Zbl 1213.49049 [27] D. Hoffman and B. White, ”Genus-one helicoids from a variational point of view,” Comment. Math. Helv., vol. 83, iss. 4, pp. 767-813, 2008. · Zbl 1161.53009 [28] N. Joshi, ”The second Painlevé hierarchy and the stationary KdV hierarchy,” Publ. Res. Inst. Math. Sci., vol. 40, iss. 3, pp. 1039-1061, 2004. · Zbl 1063.33030 [29] J. L. Lagrange, ”Essai d’une nouvelle méthode pour determiner les maxima et les minima des formules integrales indefinies,” Miscellanea Taurinensia 2, vol. 325, pp. 173-199, 1760. [30] R. B. Lockhart and R. C. McOwen, ”Elliptic differential operators on noncompact manifolds,” Ann. Scuola Norm. Sup. Pisa Cl. Sci., vol. 12, iss. 3, pp. 409-447, 1985. · Zbl 0615.58048 [31] F. J. López and A. Ros, ”On embedded complete minimal surfaces of genus zero,” J. Differential Geom., vol. 33, iss. 1, pp. 293-300, 1991. · Zbl 0719.53004 [32] W. H. Meeks III, ”The limit lamination metric for the Colding-Minicozzi minimal lamination,” Illinois J. Math., vol. 49, iss. 2, pp. 645-658, 2005. · Zbl 1087.53058 [33] W. H. Meeks III and J. Pérez, Embedded minimal surfaces of finite topology. · Zbl 1267.53006 [34] W. H. Meeks III and J. Pérez, ”Conformal properties in classical minimal surface theory,” in Surveys in Differential Geometry. Vol. IX, Somerville, MA: Int. Press, 2004, pp. 275-335. · Zbl 1086.53007 [35] W. H. Meeks III, J. Pérez, and A. Ros, Bounds on the topology and index of classical minimal surfaces. · Zbl 1115.53009 [36] W. H. Meeks III, J. Pérez, and A. Ros, The embedded Calabi-Yau conjectures for finite genus. [37] W. H. Meeks III, J. Pérez, and A. Ros, ”Uniqueness of the Riemann minimal examples,” Invent. Math., vol. 133, iss. 1, pp. 107-132, 1998. · Zbl 0916.53004 [38] W. H. Meeks III, J. Pérez, and A. Ros, ”The geometry of minimal surfaces of finite genus. I. Curvature estimates and quasiperiodicity,” J. Differential Geom., vol. 66, iss. 1, pp. 1-45, 2004. · Zbl 1068.53012 [39] W. H. Meeks III, J. Pérez, and A. Ros, ”The geometry of minimal surfaces of finite genus. II. Nonexistence of one limit end examples,” Invent. Math., vol. 158, iss. 2, pp. 323-341, 2004. · Zbl 1070.53003 [40] W. H. Meeks III and H. Rosenberg, ”The maximum principle at infinity for minimal surfaces in flat three manifolds,” Comment. Math. Helv., vol. 65, iss. 2, pp. 255-270, 1990. · Zbl 0713.53008 [41] W. H. Meeks III and H. Rosenberg, ”The uniqueness of the helicoid,” Ann. of Math., vol. 161, iss. 2, pp. 727-758, 2005. · Zbl 1102.53005 [42] J. B. Meusnier, ”Mémoire sur la courbure des surfaces,” Mém. Mathém. Phys. Acad. Sci. Paris, prés. par div. Savans, vol. 10, pp. 477-510, 1785. [43] S. Montiel and A. Ros, ”Schrödinger operators associated to a holomorphic map,” in Global Differential Geometry and Global Analysis, New York: Springer-Verlag, 1991, vol. 1481, pp. 147-174. · Zbl 0744.58007 [44] R. Osserman, ”Global properties of minimal surfaces in \(E^3\) and \(E^n\),” Ann. of Math., vol. 80, pp. 340-364, 1964. · Zbl 0134.38502 [45] R. Osserman, A Survey of Minimal Surfaces, Second ed., New York: Dover Publications, 1986. · Zbl 0209.52901 [46] J. Pérez, ”On singly-periodic minimal surfaces with planar ends,” Trans. Amer. Math. Soc., vol. 349, iss. 6, pp. 2371-2389, 1997. · Zbl 0882.53007 [47] J. Pérez and A. Ros, ”The space of properly embedded minimal surfaces with finite total curvature,” Indiana Univ. Math. J., vol. 45, iss. 1, pp. 177-204, 1996. · Zbl 0864.53008 [48] B. Riemann, Ouevres Mathématiques de Riemann, Paris: Gauthiers-Villars, 1898. [49] B. Riemann, ”Über die Fläche vom kleinsten Inhalt bei gegebener Begrenzung,” Abh. Königl, d. Wiss. Göttingen, Mathem. Cl., vol. 13, pp. 3-52, 1867. [50] R. Schoen, ”Estimates for stable minimal surfaces in three-dimensional manifolds,” in Seminar on Minimal Submanifolds, Princeton, NJ: Princeton Univ. Press, 1983, vol. 103, pp. 111-126. · Zbl 0532.53042 [51] R. M. Schoen, ”Uniqueness, symmetry, and embeddedness of minimal surfaces,” J. Differential Geom., vol. 18, iss. 4, pp. 791-809 (1984), 1983. · Zbl 0575.53037 [52] G. Segal and G. Wilson, ”Loop groups and equations of KdV type,” Inst. Hautes Études Sci. Publ. Math., vol. 61, pp. 5-65, 1985. · Zbl 0592.35112 [53] M. Shiffman, ”On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes,” Ann. of Math., vol. 63, pp. 77-90, 1956. · Zbl 0070.16803 [54] M. Traizet, ”An embedded minimal surface with no symmetries,” J. Differential Geom., vol. 60, iss. 1, pp. 103-153, 2002. · Zbl 1054.53014 [55] M. Weber and M. Wolf, ”Teichmüller theory and handle addition for minimal surfaces,” Ann. of Math., vol. 156, iss. 3, pp. 713-795, 2002. · Zbl 1028.53009 [56] R. Weikard, ”On rational and periodic solutions of stationary KdV equations,” Doc. Math., vol. 4, p. 109, 1999. · Zbl 0972.35121 [57] B. White, ”The space of \(m\)-dimensional surfaces that are stationary for a parametric elliptic functional,” Indiana Univ. Math. J., vol. 36, iss. 3, pp. 567-602, 1987. · Zbl 0770.58005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.