×

Finsler metrics and Kobayashi hyperbolicity of the moduli spaces of canonically polarized manifolds. (English) Zbl 1319.32024

The main result of the paper is the following. Let \(\pi: \mathcal{X}\rightarrow S\) be an effectively parametrized holomorphic family of compact canonically polarized complex manifolds over a complex manifold \(S\). Then \(S\) admits a \(C^\infty\) \(\mathrm{Aut}(\pi)\)-invariant Finsler metric whose holomorphic sectional curvature is bounded above by a negative constant. In particular, \(S\) is Kobayashi hyperbolic.

MSC:

32Q45 Hyperbolic and Kobayashi hyperbolic manifolds
32Q20 Kähler-Einstein manifolds
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] L. V. Ahlfors, ”Some remarks on Teichmüller’s space of Riemann surfaces,” Ann. of Math., vol. 74, pp. 171-191, 1961. · Zbl 0146.30602
[2] L. V. Ahlfors, ”Curvature properties of Teichmüller’s space,” J. Analyse Math., vol. 9, pp. 161-176, 1961/1962. · Zbl 0148.31201
[3] L. V. Ahlfors, ”The theory of meromorphic curves,” Acta Soc. Sci. Fennicae. Nova Ser. A., vol. 3, iss. 4, p. 31, 1941. · Zbl 0061.15206
[4] T. Aubin, ”Équations du type Monge-Ampère sur les variétés kähleriennes compactes,” C. R. Acad. Sci. Paris Sér. A-B, vol. 283, iss. 3, p. aiii, a119-a121, 1976. · Zbl 0333.53040
[5] Topics in Transcendental Algebraic GeometryPrinceton, NJ: Princeton Univ. Press, 1984. · Zbl 0528.00004
[6] S. Kobayashi, Hyperbolic Complex Spaces, New York: Springer-Verlag, 1998, vol. 318. · Zbl 0917.32019
[7] N. Koiso, ”Einstein metrics and complex structures,” Invent. Math., vol. 73, iss. 1, pp. 71-106, 1983. · Zbl 0515.53040
[8] S. J. Kovács, ”Families over a base with a birationally nef tangent bundle,” Math. Ann., vol. 308, iss. 2, pp. 347-359, 1997. · Zbl 0922.14024
[9] S. J. Kovács, ”Algebraic hyperbolicity of fine moduli spaces,” J. Algebraic Geom., vol. 9, iss. 1, pp. 165-174, 2000. · Zbl 0970.14008
[10] L. Migliorini, ”A smooth family of minimal surfaces of general type over a curve of genus at most one is trivial,” J. Algebraic Geom., vol. 4, iss. 2, pp. 353-361, 1995. · Zbl 0834.14021
[11] M. S. Narasimhan and R. R. Simha, ”Manifolds with ample canonical class,” Invent. Math., vol. 5, pp. 120-128, 1968. · Zbl 0159.37902
[12] H. L. Royden, ”Intrinsic metrics on Teichmüller space,” in Proceedings of the International Congress of Mathematicians, Montreal, Que., 1975, pp. 217-221. · Zbl 0344.32005
[13] Y. T. Siu, ”Curvature of the Weil-Petersson metric in the moduli space of compact Kähler-Einstein manifolds of negative first Chern class,” in Contributions to Several Complex Variables, Vieweg, Braunschweig, 1986, vol. E9, pp. 261-298. · Zbl 0598.32020
[14] G. Schumacher, ”The curvature of the Petersson-Weil metric on the moduli space of Kähler-Einstein manifolds,” in Complex Analysis and Geometry, New York: Plenum, 1993, pp. 339-354. · Zbl 0804.53094
[15] G. Schumacher, ”Positivity of relative canonical bundles and applications,” Invent. Math., vol. 190, iss. 1, pp. 1-56, 2012. · Zbl 1258.32005
[16] Y. Siu and S. Yeung, ”Hyperbolicity of the complement of a generic smooth curve of high degree in the complex projective plane,” Invent. Math., vol. 124, iss. 1-3, pp. 573-618, 1996. · Zbl 0856.32017
[17] Y. Siu and S. Yeung, ”Defects for ample divisors of abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees,” Amer. J. Math., vol. 119, iss. 5, pp. 1139-1172, 1997. · Zbl 0947.32012
[18] E. Viehweg, Quasi-Projective Moduli for Polarized Manifolds, New York: Springer-Verlag, 1995, vol. 30. · Zbl 0844.14004
[19] E. Viehweg and K. Zuo, ”On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds,” Duke Math. J., vol. 118, iss. 1, pp. 103-150, 2003. · Zbl 1042.14010
[20] S. A. Wolpert, ”Chern forms and the Riemann tensor for the moduli space of curves,” Invent. Math., vol. 85, iss. 1, pp. 119-145, 1986. · Zbl 0595.32031
[21] S. T. Yau, ”On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I,” Comm. Pure Appl. Math., vol. 31, iss. 3, pp. 339-411, 1978. · Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.