×

zbMATH — the first resource for mathematics

An equation-based algorithmic differentiation technique for differential algebraic equations. (English) Zbl 1310.65087
Summary: This work presents a novel Algorithmic Differentiation (AD) approach for sensitivity analysis of Differential Algebraic Equation systems (DAEs). For the first time, the algorithmic specification of a computationally memory-efficient equation-based AD technique is presented. This approach is mainly targeting equation-based modeling and simulation tools capable of constructing high-level models using state of the art object-oriented modeling principles. The approach is based on fundamental tree algorithms that are (even manually) applicable on implicit equation systems of long formulas, the main building blocks of model components. By applying the presented forward differentiation scheme on a given DAE, efficient representation of Sensitivity Equation Systems (SESs) is computed. Parameter sensitivities are evaluated by direct integration of the derived SESs. To overcome the runtime performance drawback of direct numerical integration, a system decomposition approach is recommended. It is shown that the runtime performance using modern variable-step integration methods tends to achieve the expected theoretical complexity of the forward differentiation scheme under few realistic assumptions.
MSC:
65L80 Numerical methods for differential-algebraic equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Elmqvist, S.E. Mattsson, Modelica—the next generation modeling language: an international design effort, in: ESS97: The 9th European Simulation Symposium. Passau, Germany, 1997.
[2] Barton, P. I.; Pantelide, C. C., Modeling of combined discrete/continuous processes, AIChE J., 40, 966-979, (1994)
[3] MathWorks, 2014. http://www.mathworks.com.
[4] K.J. Åström, H. Elmqvist, S.E. Mattsson, Evolution of continuous-time modeling and simulation, in: ESM’1998: The 12th European Simulation Multiconference-Simulation-Past, Present and Future. Manchester, United Kingdom, 1998.
[5] Casella, F.; Donida, F.; Lovera, M., Beyond simulation: computer-aided control system design using equation-based object-oriented modelling for the next decade, Simul. News Europe, 19, 29-41, (2009)
[6] Elmqvist, H., A structured model language for large continuous systems, (1978), Lund Institute of Technology Lund, Sweden, (Ph.D. thesis)
[7] Cellier, F. E., Continuous system modeling, (1991), Springer Verlag · Zbl 0725.93006
[8] H. Elmqvist, M. Otter, Methods for tearing systems of equations in object-oriented modeling, in: ESM’94 European Simulation Multiconference. Barcelona, Spain, 1994.
[9] D. Brück, H. Elmqvist, H. Olsson, S.E. Mattsson, Dymola for multi-engineering modeling and simulation, in: Modelica’2002: The 2nd International Modelica Conference. Munich, Germany, 2002.
[10] Fritzson, P.; Aronsson, P.; Lundvall, H.; Nyström, K.; Pop, A.; Saldamli, L.; Broman, D., The openmodelica modeling, simulation, and software development environment, Simul. News Europe, 44, (2005)
[11] Maplesoft, 2014. http://www.maplesoft.com. Maplesoft—Cybernet Systems Co..
[12] Brenan, K. E.; Campbell, S. L.; Petzold, L. R., Numerical solution of initial-value problems in differential-algebraic equations, (1989), North-Holland New York, USA · Zbl 0699.65057
[13] Forth, S. A., An efficient overloaded implementation of forward mode automatic differentiation in MATLAB, ACM Trans. Math. Softw., 32, 195-222, (2006) · Zbl 1365.65053
[14] T. Blochwitz, et al. Functional mockup interfae 2.0: the standard for tool independent exchange of simulation models, in: Modelica’2012: The 9th International Modelica Conference. Munich, Germany, 2012.
[15] J. Åkesson, W. Braun, P. Lindholm, B. Bachmann, Generation of sparse Jacobians for the function mock-up interface 2.0, in: Modelica’2012: The 9th International Modelica Conference. Munich, Germany, 2012.
[16] Griewank, A.; Walther, A., (Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Other Titles in Applied Mathematics, vol. 105, (2008), SIAM Philadelphia, PA) · Zbl 1159.65026
[17] Naumann, U., The art of differentiating computer programs, an introduction to algorithmic differentiation, (2012), SIAM · Zbl 1275.65015
[18] Bücker, H. M.; Bischof, C. H., What computers can do for you automatically: the role of automatic differentiation in inverse modeling. GACM report, 25-28, (2011), Spring
[19] Bartholomew-Biggs, M.; Brown, S.; Christianson, B.; Dixon, L., Automatic differentiation of algorithms, J. Comput. Appl. Math., 124, 171-190, (2000) · Zbl 0994.65020
[20] H. Olsson, H. Tummescheit, H. Elmqvist, Using automatic differentiation for partial derivatives of functions in Modelica, in: Modelica’2005: The 4th International Modelica Conference. Hamburg, Germany, 2005.
[21] W. Braun, L. Ochel, B. Bachmann, Symbolically derived Jacobians using automatic differentiation—enhancement of the OpenModelica compiler, in: Modelica’2011: The 8th International Modelica Conference. Dresden, Germany, 2011.
[22] Wiechert, W.; Noack, S.; Elsheikh, A., Modeling languages for biochemical network simulation: reaction vs equation based approaches, Adv. Biochem. Eng./Biotechnol., 121, 109-138, (2010)
[23] Bauer, I.; Bock, H. G.; Körkel, S.; Schlöder, J. P., Numerical methods for optimum experimental design in DAE systems, J. Comput. Appl. Math., 120, 1-25, (2000) · Zbl 0998.65083
[24] Diehl, M.; Bock, H. G.; Schlöder, J. P.; Findeisen, R.; Nagy, Z.; Allgöwer, F., Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations, J. Process Control, 12, 577-585, (2002)
[25] Elsheikh, A., Derivative-based hybrid heuristics for continuous-time simulation-optimization, Simul. Modell. Pract. Theory, 46, 164-175, (2014)
[26] J. Andersson, J. Åkesson, F. Casella, M. Diehl, Integration of CasADi and JModelica.org, in: Modelica’2011: The 8th International Modelica Conference. Dresden, Germany, 2011.
[27] Elsheikh, A.; Wiechert, W., Automatic sensitivity analysis of DAE-systems generated from equation-based modeling languages, (Bischof, C. H.; Bücker, H. M.; Hovland, P. D.; Naumann, U.; Utke, J., Advances in Automatic Differentiation, (2008), Springer), 235-246 · Zbl 1152.65456
[28] Åkesson, J.; Årzén, K.-E.; Gäfvert, M.; Bergdahl, T.; Tummescheit, H., Modeling and optimization with optimica and jmodelica.org—languages and tools for solving large-scale dynamic optimization problem, Comput. Chem. Eng., 34, 1737-1749, (2010)
[29] Hindmarsh, A. C.; Brown, P. N.; Grant, K. E.; Lee, S. L.; Serban, R.; Shumaker, D. E.; Woodward, C. S., SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Software, 31, 363-396, (2005), URL: http://doi.acm.org/10.1145/1089014.1089020 · Zbl 1136.65329
[30] Dickinson, R.; Gelinas, R., Sensitivity analysis of ordinary differential equation systems—a direct method, J. Comput. Phys., 21, 123-143, (1976) · Zbl 0333.65038
[31] A. Elsheikh, ADGenKinetics: an algorithmically differentiated library for biochemical networks modeling via simplified kinetics formats, in: Modelica’2012: The 9th International Modelica Conference, number 076 in Linköping Electronic Conference Proceedings. Munich, Germany, 2012, pp. 915-926. http://dx.doi.org/ecp12076915.
[32] A. Elsheikh, Modeling parameter sensitivities using equation-based algorithmic differentiation techniques: the ADMSL.Electrical.Analog library, in: Modelica’2014: The 10th International Modelica Conference. Lund, Sweden, 2014.
[33] Atherton, R. W.; Schainker, R. B.; Ducot, E. R., On the statistical sensitivity analysis of models for chemical kinetics, AIChE J., 21, 441-448, (1975)
[34] D.J. De Pauw, P.A. Vanrolleghem, Practical aspects of sensitivity analysis for dynamic models, in: MATHMOD 2003: The 4th Vienna International Conference on Mathematical Modelling. Vienna, Austria, 2003. · Zbl 1127.93342
[35] Elsheikh, A.; Wiechert, W., Accuracy of parameter sensitivities of DAE systems using finite difference methods, (Troch, I.; Breitenecker, F., MATHMOD 2012: The 7th Vienna International Conference on Mathematical Modelling, Mathematical Modelling, vol. 7, (2012), IFAC-PapersOnLine.net Vienna, Austria), 136-142
[36] Li, S.; Petzold, L., Software and algorithms for sensitivity analysis of large-scale differential algebraic systems, J. Comput. Appl. Math., 125, 131-145, (2000) · Zbl 0971.65074
[37] R. Franke, F. Casella, M. Otter, M. Sielemann, H. Elmqvist, S.E. Mattsson, H. Olsson, Stream connectors—an extension of Modelica for device-oriented modeling of convective transport phenomena, in: Modelica’2009: The 7th International Modelica Conference. Como, Italy, 2009.
[38] Bischof, C. H.; Bücker, H. M.; Marquardt, W.; Petera, M.; Wyes, J., Transforming equation-based models in process engineering, (Bücker, H. M.; Corliss, G.; Hovland, P.; Naumann, U.; Norris, B., Automatic Differentiation: Applications, Theory, and Implementations, Lect. Notes in Comp. Sc. and Eng., (2005), Springer), 189-198 · Zbl 1270.68385
[39] Murota, K., Systems analysis by graphs and matroids, (1987), Springer Berlin · Zbl 0624.05001
[40] Wahl, S. A., Methoden zur integrierten analyse metabolischer netzwerke unter stationären und instationären bedingungen, (2007), Jülich Forschungszentrum Germany, (Dissertation)
[41] J. Tillack, S. Noack, K. Nöh, A. Elsheikh, W. Wiechert, A software framework for modeling and simulation of dynamic metabolic and isotopic systems, in: MATHMOD’2009: The 6th Vienna International Conference on Mathematical Modelling. Vienna, Austria, 2009.
[42] Fritzson, P., Principles of object-oriented modeling and simulation with modelica, (2003), Wiley-IEEE Computer Society Pr.
[43] Hindmarsh, A. C., ODEPACK, a systematized collection of ODE solvers, IMACS Trans. Sci. Comput., 1, 55-64, (1983)
[44] Li, S.; Petzold, L.; Zhu, W., Sensitivity analysis of differential-algebraic equations: a comparison of methods on a special problem, Appl. Numer. Math.: Trans. IMACS, 32, 161-174, (2000) · Zbl 0945.65095
[45] Galán, S.; Feehery, W. F.; Barton, P. I., Parametric sensitivity functions for hybrid discrete/continuous systems, Appl. Numer. Math., 31, 17-47, (1999) · Zbl 0937.65137
[46] Pantelides, C. C., The consistent initialization of differential-algebraic systems, SIAM J. Sci. Stat. Comput., 9, 213-231, (1988) · Zbl 0643.65039
[47] Mattsson, S. E.; Söderlind, G., Index reduction in differential-algebraic equations using dummy derivatives, SIAM J. Sci. Comput., 14, 677-692, (1993) · Zbl 0785.65080
[48] B. Bachmann, P. Aronsson, P. Fritzson, Robust initialization of differential algebraic equations, in: Modelica’2006: The 5th International Modelica Conference. Vienna, Austria, 2006.
[49] Leitold, A.; Hangos, K. M., Structural solvability analysis of dynamic process models, Comput. Chem. Eng., 25, 1633-1646, (2001)
[50] Reissig, G.; Martinson, W. S.; Barton, P. I., Differential-algebraic equations of index 1 may have an arbitrarily high structural index, SIAM J. Sci. Comput., 21, 1987-1990, (1999) · Zbl 0958.34003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.