×

zbMATH — the first resource for mathematics

A discrete-time retrial queue with unreliable server and general server lifetime. (English) Zbl 1411.60138

MSC:
60K25 Queueing theory (aspects of probability theory)
90B22 Queues and service in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. R. Artalejo, ”A classified bibliography of research on retrial queues: Progress in 1990–1999,” Top, 7, 187–211 (1999). · Zbl 1009.90001 · doi:10.1007/BF02564721
[2] J. R. Artalejo, ”Accessible bibliography on retrial queues,” Math. Comp. Mod., 30, 1–6 (1999). · Zbl 1009.90001 · doi:10.1016/S0895-7177(99)00128-4
[3] J. R. Artalejo and O. Hernandez-Lerma, ”Performance analysis and optimal control of the Geo | Geo | c queue,” Perform. Eval., 52, 15–39 (2003). · doi:10.1016/S0166-5316(02)00161-X
[4] H. Bruneel and B. G. Kim, Discrete-Time Models for Communication Systems Including ATM, Kluwer, Boston (1993).
[5] M. L. Chaudhry, J. G. C. Templeton, and U. C. Gupta, ”Analysis of the discrete-time GI | Geom(n) | 1 | N queue,” Comp. Math. Appl., 31, 59–68 (1996). · Zbl 0844.90031 · doi:10.1016/0898-1221(95)00182-X
[6] B. D. Choi and J. W. Kim, ”Discrete-time Geo 1, Geo 2 | G | 1 retrial queueing system with two types of calls,” Comp. Math. Appl., 33, 79–88 (1997). · Zbl 0878.90041 · doi:10.1016/S0898-1221(97)00078-3
[7] G. I. Falin, ”A survey of retrial queues,” Queue. Syst., 7, 127–168 (1990). · Zbl 0709.60097 · doi:10.1007/BF01158472
[8] G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman and Hall, London (1997).
[9] D. Fiems and H. Bruneel, ”Analysis of a discrete-time queueing system with timed vacations,” Queue. Syst., 42, 243–254 (2002). · Zbl 1011.60073 · doi:10.1023/A:1020571814186
[10] D. Fiems, B. Steyaert, and H. Bruneel, ”Randomly interrupted GI | G | 1 queues: Service strategies and stability issues,” Ann. Oper. Res., 112, 171–183 (2002). · Zbl 1013.90028 · doi:10.1023/A:1020937324199
[11] D. Fiems, B. Steyaert, and H. Bruneel, ”Analysis of a discrete-time GI | G | 1 queueing model subjected to bursty interruptions,” Comp. Oper. Res., 30, 139–153 (2003). · Zbl 1029.90021 · doi:10.1016/S0305-0548(01)00086-7
[12] S. W. Fuhrmann and R. B. Cooper, ”Stochastic decompositions in the M | G | 1 queue with generalized vacations,” Oper. Res., 33, 1117–1129 (1985). · Zbl 0585.90033 · doi:10.1287/opre.33.5.1117
[13] U. C. Gupta and V. Goswami, ”Performance analysis of finite buffer discrete-time queue with bulk service,” Comp. Oper. Res., 29, 1331–1341 (2002). · Zbl 0994.90047 · doi:10.1016/S0305-0548(01)00034-X
[14] J. J. Hunter, Mathematical Techniques of Applied Probability, Vol. 2, Academic Press, New York (1983). · Zbl 0539.60065
[15] H. Li and T. Yang, ”Geo | G | 1 discrete time retrial queue with Bernoulli schedule,” Europ. J. Oper. Res., 111, 629–649 (1998). · Zbl 0948.90043 · doi:10.1016/S0377-2217(97)90357-X
[16] H. Li and T. Yang, ”Steady-state queue size distribution of discrete-time PH | Geo | 1 retrial queues,” Math. Comp. Mod., 30, 51–63 (1999). · Zbl 1042.60543 · doi:10.1016/S0895-7177(99)00131-4
[17] W. Li, D. Shi, and X. Chao, ”Reliability analysis of M | G | 1 queueing systems with server breakdowns and vacations,” J. Appl. Probab., 34, 546–555 (1997). · Zbl 0894.60084 · doi:10.2307/3215393
[18] T. Meisling, ”Discrete time queueing theory,” Oper. Res., 6, 96–105 (1958). · doi:10.1287/opre.6.1.96
[19] H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation. Discrete-Time Systems, Vol. 3, North-Holland, Amsterdam (1993).
[20] M. Takahashi, H. Osawa, and T. Fujisawa, ”Geo [X] | G | 1 retrial queue with nonpreemptive priority,” Asia-Pacific J. Oper. Res., 16, 215–234 (1999). · Zbl 1053.90505
[21] N. Tian and Z. G. Zhang, ”The discrete-time GI | Geo | 1 queue with multiple vacations,” Queue. Syst., 40, 283–294 (2002). · Zbl 0993.90029 · doi:10.1023/A:1014711529740
[22] J. Wang, J. Cao, and Q. Li, ”Reliability analysis of the retrial queue with server breakdowns and repairs,” Queue. Syst., 38, 363–380 (2001). · Zbl 1028.90014 · doi:10.1023/A:1010918926884
[23] M. E. Woodward, Communication and Computer Networks: Modelling with Discrete-Time Queues, IEEE Computer Society Press, Los Alamitos, California (1994).
[24] T. Yang and H. Li, ”On the steady-state queue size distribution of the discrete-time Geo | G | 1 queue with repeated customers,” Queue. Syst., 21, 199–215 (1995). · Zbl 0840.60085 · doi:10.1007/BF01158581
[25] T. Yang and J. G. C. Templeton, ”A survey on retrial queues,” Queue. Syst., 2, 201–233 (1987). · Zbl 0658.60124 · doi:10.1007/BF01158899
[26] Z. G. Zhang and N. Tian, ”Discrete time Geo | G | 1 queue with multiple adaptive vacations,” Queue. Syst., 38, 419–429 (2001). · Zbl 1079.90525 · doi:10.1023/A:1010947911863
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.