×

zbMATH — the first resource for mathematics

Heterogeneous finite-source retrial queues with server subject to breakdowns and repairs. (English) Zbl 1411.60139

MSC:
60K25 Queueing theory (aspects of probability theory)
90B22 Queues and service in operations research
Software:
MOSEL
PDF BibTeX Cite
Full Text: DOI
References:
[1] B. Almasi, ”Response time for finite-source heterogeneous nonreliable queueing systems,” Comp. Math. Appl., 31, 55–59 (1996). · Zbl 0857.60095
[2] B. Almasi, G. Bolch, and J. Sztrik, ”Performability modelling of nonhomogeneous terminal systems using MOSEL,” in: Vth International Workshop on Performnability Modelling of Computer and Communication Systems, Erlangen, Germany (2001), pp. 37–41.
[3] B. Almasi, J. Roszik, and J. Sztrik, Homogeneous Finite-Source Retrial Queues with Server Subject to Breakdowns and Repairs, Technical Report, http://it.math.klte.hu/user/jsztrik/publications/resrep.htm, University of Debrecen, Debrecen (2002). · Zbl 1411.60139
[4] B. Almasi, G. Bolch, and J. Sztrik, ”Heterogeneous finite-source retrial queues,” J. Math. Sci. (to appear). · Zbl 1070.60078
[5] J. R. Artalejo, ”Retrial queues with a finite number of sources,” J. Korean Math. Soc., 35, 503–525 (1998). · Zbl 0930.60079
[6] J. R. Artalejo, ”Accessible bibliography on retrial queues,” Math. Comp. Mod., 30, 1–6 (1999). · Zbl 1009.90001
[7] A. Aissani and J. R. Artalejo, ”On the single server retrial queue subject to breakdowns,” Queue. Syst. Theor. Appl., 30, 309–321 (1998). · Zbl 0918.90073
[8] K. Begain, G. Bolch, and H. Herold, Practical Performance Modelling, Application of the MOSEL Language, Kluwer, Boston (2001).
[9] G. Bolch, J. Roszik, and J. Sztrik, Heterogeneous Finite-Source Retrial Queues with Server Subject to Breakdowns and Repairs, Technical Report, http://it.math.klte.hu/user/jsztrik/publications/resrep.htm, University of Debrecen, Debrecen (2003). · Zbl 1411.60139
[10] G. I. Falin, ”A survey of retrial queues,” Queue. Syst., 7, 127–168 (1990). · Zbl 0709.60097
[11] G. I. Falin and J. G. C. Templeton, Retrial Queues, Chapman and Hall, London (1997).
[12] G. I. Falin and J. R. Artalejo, ”A finite source retrial queue,” Europ. J. Oper. Res., 108, 409–424 (1998). · Zbl 0943.90012
[13] G. I. Falin, ”A multiserver retrial queue with a finite number of sources of primary calls,” Math. Comp. Mod., 30, 33–49 (1999). · Zbl 1042.60537
[14] D. J. Houck and W. S. Lai, ”Traffic modelling and analysis of hybrid fibercoax systems,” Comp. Net. ISDN Syst., 30, 821–834 (1998).
[15] G. K. Janssens, ”The quasi-random input queueing system with repeated attempts as a model for collision-avoidance star local area network,” IEEE Trans. Comm., 45, 360–364 (1997).
[16] A. I. Kalmychkov and G. A. Medvedev, ”Probability characteristics of Markov local-area networks with randomaccess protocols,” Autom. Contr. Comp. Sci., 24, 38–45 (1990).
[17] I. I. Khomichkov, ”Study of models of local networks with multiple-access protocols,” Autom. Rem. Contr., 54, 1801–1811 (1993).
[18] I. N. Kovalenko, N. Yu. Kuznetsov, and P. A. Pegg, Mathematical Theory of Reliability of Time Dependent Systems with Practical Applications, Wiley, Chichester (1997). · Zbl 0899.60074
[19] V. G. Kulkarni and Choi Bong Dae, ”Retrial queues with server subject to breakdowns and repairs,” Queue. Syst. Theor. Appl., 7, 191–208 (1990). · Zbl 0727.60110
[20] H. Li and T. Yang, ”A single server retrial queue with server vacations and a finite number of input sources,” Europ. J. Oper. Res., 85, 149–160 (1995). · Zbl 0912.90139
[21] M. K. Mehmet-Ali, J. F. Hayes, and A. K. Elhakeem, ”Traffic analysis of a local area network with star topology,” IEEE Trans. Comm., 36, 703–712 (1988).
[22] H. Ohmura and Y. Takahashi, ”An analysis of repeated call model with a finite number of sources,” Electr. Comm. Japan, 68, 112–121 (1985).
[23] S. N. Stepanov, ”The analysis of the model with finite number of sources and taking into account the subscriber behavior,” Autom. Rem. Contr., 55, 100–113 (1994). · Zbl 0845.90056
[24] J. Sztrik and A. Posafalvi, ”On the heterogeneous machine interference with limited server’s availability,” Europ. J. Oper. Res., 28, 321–328 (1987). · Zbl 0612.90043
[25] H. Takagi, Queueing Analysis, A Foundation of Performance Evaluation, Vol. 2., North-Holland, Amsterdam (1993).
[26] P. Tran-Gia and M. Mangjes, ”Modelling of customer retrial phenomenon in cellural mobile networks,” IEEE J. Select. Areas Comm., 15, 1406–1414 (1997).
[27] J. Wang, J. Cao, and Q. Li, ”Reliability analysis of the retrial queue with server breakdowns and repairs,” Queue. Syst. Theor. Appl., 38, 363–380 (2001). · Zbl 1028.90014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.