Verified bounds for all the singular values of matrix. (English) Zbl 1312.65062

The author proposes four algorithms for computing verified bounds of all the singular values of a matrix and shows that these algorithms give equal or tighter bounds, as well as smaller computational costs than those proposed in some previous papers. Numerical results concerning generalized singular values are also presented.


65F20 Numerical solutions to overdetermined systems, pseudoinverses
15A18 Eigenvalues, singular values, and eigenvectors
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
65G20 Algorithms with automatic result verification
Full Text: DOI


[1] Alefeld, G; Hoffmann, R; Mayer, G, Verification algorithms for generalized singular values, Math. Nachr., 208, 5-29, (1999) · Zbl 0939.65065
[2] Davis, T.A.: The university of Florida sparse matrix collection. http://www.cise.ufl.edu/research/sparse/matrices/ · Zbl 1365.65123
[3] Fernando, KV; Parlett, BN, Accurate singular values and differential qd algorithms, Numer. Math., 67, 191-229, (1994) · Zbl 0814.65036
[4] Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996) · Zbl 0865.65009
[5] Higham, N.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM Publications, Philadelphia (2002) · Zbl 1011.65010
[6] Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994) · Zbl 0801.15001
[7] Miyajima, S; Ogita, T; Rump, SM; Oishi, S, Fast verification for all eigenpairs in symmetric positive definite generalized eigenvalue problems, Reliab. Comput., 14, 24-45, (2010)
[8] Nakatsukasa, Y; Aishima, K; Yamazaki, I, Dqds with aggressive early deflation, SIAM. J. Matrix Anal. Appl., 33, 22-51, (2012) · Zbl 1248.65042
[9] Oishi, S, Fast enclosure of matrix eigenvalues and singular values via rounding mode controlled computation, Linear Algebra Appl., 324, 133-146, (2001) · Zbl 0978.65026
[10] Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM Publications, Philadelphia (1997) · Zbl 0885.65039
[11] Parlett, BN; Marques, OA, An implementation of the dqds algorithm (positive case), Linear Algebra Appl., 309, 217-259, (2000) · Zbl 0952.65031
[12] Paige, CC; Sauders, MA, Towards a generalized singular value decomposition, SIAM J. Numer. Anal., 18, 398-405, (1981) · Zbl 0471.65018
[13] Rohn, J.: VERSOFT: Verification software in MATLAB / INTLAB. http://uivtx.cs.cas.cz/rohn/matlab/ · Zbl 0939.65065
[14] Rump, SM, Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse, BIT Numer. Math., 51, 367-384, (2011) · Zbl 1226.65028
[15] Loan, CF, Generalizing the singular value decomposition, SIAM J. Numer. Anal., 13, 76-83, (1976) · Zbl 0338.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.