Presanis, Anne M.; Pebody, Richard G.; Birrell, Paul J.; Tom, Brian D. M.; Green, Helen K.; Durnall, Hayley; Fleming, Douglas; De Angelis, Daniela Synthesising evidence to estimate pandemic (2009) A/H1N1 influenza severity in 2009–2011. (English) Zbl 1454.62379 Ann. Appl. Stat. 8, No. 4, 2378-2403 (2014). Summary: Knowledge of the severity of an influenza outbreak is crucial for informing and monitoring appropriate public health responses, both during and after an epidemic. However, case-fatality, case-intensive care admission and case-hospitalisation risks are difficult to measure directly. Bayesian evidence synthesis methods have previously been employed to combine fragmented, under-ascertained and biased surveillance data coherently and consistently, to estimate case-severity risks in the first two waves of the 2009 A/H1N1 influenza pandemic experienced in England. We present in detail the complex probabilistic model underlying this evidence synthesis, and extend the analysis to also estimate severity in the third wave of the pandemic strain during the 2010/2011 influenza season. We adapt the model to account for changes in the surveillance data available over the three waves. We consider two approaches: (a) a two-stage approach using posterior distributions from the model for the first two waves to inform priors for the third wave model; and (b) a one-stage approach modelling all three waves simultaneously. Both approaches result in the same key conclusions: (1) that the age-distribution of the case-severity risks is “u”-shaped, with children and older adults having the highest severity; (2) that the age-distribution of the infection attack rate changes over waves, school-age children being most affected in the first two waves and the attack rate in adults over 25 increasing from the second to third waves; and (3) that when averaged over all age groups, case-severity appears to increase over the three waves. The extent to which the final conclusion is driven by the change in age-distribution of those infected over time is subject to discussion. Cited in 3 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 62F15 Bayesian inference Keywords:evidence synthesis; Bayesian; influenza; severity Software:BUGS × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Ades, A. E. and Sutton, A. J. (2006). Multiparameter evidence synthesis in epidemiology and medical decision-making: Current approaches. J. Roy. Statist. Soc. Ser. A 169 5-35. · doi:10.1111/j.1467-985X.2005.00377.x [2] Albert, I., Espié, E., de Valk, H. and Denis, J.-B. B. (2011). A Bayesian evidence synthesis for estimating campylobacteriosis prevalence. Risk Analysis 31 1141-1155. [3] Bird, S. M. (2010). Like-with-like comparisons? The Lancet 376 684+. [4] Birrell, P. J., Ketsetzis, G., Gay, N. J., Cooper, B. S., Presanis, A. M., Harris, R. J., Charlett, A., Zhang, X.-S., White, P. J., Pebody, R. G. and De Angelis, D. (2011). Bayesian modeling to unmask and predict influenza A/H1N1pdm dynamics in London. Proc. Natl. Acad. Sci. USA 108 18238-18243. [5] Box, G. E. P. (1980). Sampling and Bayes’ inference in scientific modelling and robustness. J. Roy. Statist. Soc. Ser. A 143 383-430. · Zbl 0471.62036 · doi:10.2307/2982063 [6] Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Statist. 7 434-455. [7] Campbell, C. N. J., Mytton, O. T., McLean, E. M., Rutter, P. D., Pebody, R. G., Sachedina, N., White, P. J., Hawkins, C., Evans, B., Waight, P. A., Ellis, J., Bermingham, A., Donaldson, L. J. and Catchpole, M. (2011). Hospitalization in two waves of pandemic influenza A(H1N1) in England. Epidemiology and Infection 139 1560-1569. [8] Department of Health (2011). Department of Health Winter Watch. Accessed 25/02/2011. [9] Donaldson, L. J., Rutter, P. D., Ellis, B. M., Greaves, F. E. C., Mytton, O. T., Pebody, R. G. and Yardley, I. E. (2009). Mortality from pandemic A/H1N1 2009 influenza in England: Public health surveillance study. BMJ 339 b5213. [10] Eddy, D. M., Hasselblad, V. and Shachter, R. (1992). Meta-Analysis by the Confidence Profile Method . Academic Press, Boston, MA. [11] Fleming, D. M. (1999). Weekly returns service of the royal college of general practitioners. Communicable Disease and Public Health / PHLS 2 96-100. [12] Garske, T., Legrand, J., Donnelly, C. A., Ward, H., Cauchemez, S., Fraser, C., Ferguson, N. M. and Ghani, A. C. (2009). Assessing the severity of the novel influenza A/H1N1 pandemic. BMJ 339 b2840. [13] Goubar, A., Ades, A. E., De Angelis, D., McGarrigle, C. A., Mercer, C. H., Tookey, P. A., Fenton, K. and Gill, O. N. (2008). Estimates of human immunodeficiency virus prevalence and proportion diagnosed based on Bayesian multiparameter synthesis of surveillance data. J. Roy. Statist. Soc. Ser. A 171 541-580. · doi:10.1111/j.1467-985X.2007.00537.x [14] Hardelid, P., Andrews, N. J., Hoschler, K., Stanford, E., Baguelin, M., Waight, P. A., Zambon, M. and Miller, E. (2011). Assessment of baseline age-specific antibody prevalence and incidence of infection to novel influenza A/H1N1 2009. Health Technology Assessment 14 115-192. [15] Health Protection Agency (2010). Epidemiological report of pandemic (H1N1) 2009 in the UK. Technical report, Health Protection Agency. [16] Health Protection Agency, Health Protection Scotland, Communicable Disease Surveillance Centre Northern Ireland and National Public Health Service for Wales (2009). First Few Hundred (FF100) Project: Epidemiological Protocols for Comprehensive Assessment of Early Swine Influenza Cases in the United Kingdom Technical report, Health Protection Agency. [17] Hoschler, K., Thompson, C., Andrews, N., Galiano, M., Pebody, R., Ellis, J., Stanford, E., Baguelin, M., Miller, E. and Zambon, M. (2012). Seroprevalence of influenza A(H1N1)pdm09 virus antibody, England, 2010 and 2011. Emerging Infect. Dis. 18 1894-1897. [18] Jackson, C., Vynnycky, E. and Mangtani, P. (2010). Estimates of the transmissibility of the 1968 (Hong Kong) influenza pandemic: Evidence of increased transmissibility between successive waves. Am. J. Epidemiol. 171 465-478. [19] Laurie, K. L., Huston, P., Riley, S., Katz, J. M., Willison, D. J., Tam, J. S., Mounts, A. W., Hoschler, K., Miller, E., Vandemaele, K., Broberg, E., Van Kerkhove, M. D. and Nicoll, A. (2013). Influenza serological studies to inform public health action: Best practices to optimise timing, quality and reporting. Influenza Other Respir Viruses 7 211-224. [20] Lipsitch, M., Riley, S., Cauchemez, S., Ghani, A. C. and Ferguson, N. M. (2009). Managing and reducing uncertainty in an emerging influenza pandemic. New England Journal of Medicine 361 112-115. [21] Lipsitch, M., Finelli, L., Heffernan, R. T., Leung, G. M., Redd, S. C. and for the 2009 H1N1 Surveillance Group (2011). Improving the evidence base for decision making during a pandemic: The example of 2009 influenza A/H1N1. Biosecurity and Bioterrorism : Biodefense Strategy , Practice , and Science 9 89-114. [22] Lu, G. and Ades, A. E. (2006). Assessing evidence inconsistency in mixed treatment comparisons. J. Amer. Statist. Assoc. 101 447-459. · Zbl 1119.62354 · doi:10.1198/016214505000001302 [23] Lunn, D., Spiegelhalter, D., Thomas, A. and Best, N. (2009). The BUGS project: Evolution, critique and future directions. Stat. Med. 28 3049-3067. · doi:10.1002/sim.3680 [24] McDonald, S. A., Presanis, A. M., De Angelis, D., van der Hoek, W., Hooiveld, M., Donker, G. and Kretzschmar, M. E. (2014). An evidence synthesis approach to estimating the incidence of seasonal influenza in the Netherlands. Influenza Other Respi. Viruses 8 33-41. [25] Miller, M. A., Viboud, C., Balinska, M. and Simonsen, L. (2009). The signature features of influenza pandemics-implications for policy. N. Engl. J. Med. 360 2595-2598. [26] Miller, E., Hoschler, K., Hardelid, P., Stanford, E., Andrews, N. and Zambon, M. (2010). Incidence of 2009 pandemic influenza A/H1N1 infection in England: A cross-sectional serological study. The Lancet 375 1100-1108. [27] O’Hagan, A. (2003). HSSS model criticism. In Highly Structured Stochastic Systems. Oxford Statist. Sci. Ser. 27 423-453. Oxford Univ. Press, Oxford. [28] Pebody, R. G., McLean, E., Zhao, H., Cleary, P., Bracebridge, S., Foster, K., Charlett, A., Hardelid, P., Waight, P., Ellis, J., Bermingham, A., Zambon, M., Evans, B., Salmon, R., McMenamin, J., Smyth, B., Catchpole, M. and Watson, J. (2010). Pandemic influenza A(H1N1) 2009 and mortality in the United Kingdom: Risk factors for death, April 2009 to March 2010. Euro Surveillance 15 . [29] Presanis, A. M., De Angelis, D., Spiegelhalter, D. J., Seaman, S., Goubar, A. and Ades, A. E. (2008). Conflicting evidence in a Bayesian synthesis of surveillance data to estimate human immunodeficiency virus prevalence. J. Roy. Statist. Soc. Ser. A 171 915-937. · doi:10.1111/j.1467-985X.2008.00543.x [30] Presanis, A. M., De Angelis, D., New York City Swine Flu Investigation Team, Hagy, A., Reed, C., Riley, S., Cooper, B. S., Finelli, L., Biedrzycki, P. and Lipsitch, M. (2009). The severity of pandemic H1N1 influenza in the United States, from April to July 2009: A Bayesian analysis. PLoS Med. 6 e1000207. [31] Presanis, A. M., De Angelis, D., Goubar, A., Gill, O. N. and Ades, A. E. (2011a). Bayesian evidence synthesis for a transmission dynamic model for HIV among men who have sex with men. Biostatistics 12 666-681. · Zbl 1314.62249 · doi:10.1093/biostatistics/kxr006 [32] Presanis, A. M., Pebody, R. G., Paterson, B. J., Tom, B. D. M., Birrell, P. J., Charlett, A., Lipsitch, M. and De Angelis, D. (2011b). Changes in severity of 2009 pandemic A/H1N1 influenza in England: A Bayesian evidence synthesis. BMJ 343 . [33] Presanis, A. M., Ohlssen, D., Spiegelhalter, D. J. and De Angelis, D. (2013). Conflict diagnostics in directed acyclic graphs, with applications in Bayesian evidence synthesis. Statist. Sci. 28 376-397. · Zbl 1331.62160 · doi:10.1214/13-STS426 [34] Presanis, A. M., Pebody, R. G., Birrell, P. J., Tom, B. D. M., Green, H., Durnell, H., Fleming, D. and De Angelis, D. (2014). Supplement to “Synthesising evidence to estimate pandemic (2009) A/H1N1 influenza severity in 2009-2011.” . · Zbl 1454.62379 [35] Reed, C., Angulo, F. J., Swerdlow, D. L., Lipsitch, M., Meltzer, M. I., Jernigan, D. and Finelli, L. (2009). Estimates of the prevalence of pandemic (H1N1) 2009, United States, April-July 2009. Emerging Infect. Dis. 15 2004-2007. [36] Shubin, M., Virtanen, M., Toikkanen, S., Lyytikäinen, O. and Auranen, K. (2013). Estimating the burden of A(H1N1)pdm09 influenza in Finland during two seasons. Epidemiology & Infection 142 964-974. [37] Spiegelhalter, D. J., Abrams, K. R. and Myles, J. P. (2004). Bayesian Approaches to Clinical Trials and Health-Care Evaluation ( Statistics in Practice ). Wiley, New York. [38] Sweeting, M. J., De Angelis, D., Hickman, M. and Ades, A. E. (2008). Estimating hepatitis C prevalence in England and Wales by synthesizing evidence from multiple data sources. Assessing data conflict and model fit. Biostatistics 9 715-734. [39] Sypsa, V., Bonovas, S., Tsiodras, S., Baka, A., Efstathiou, P., Malliori, M., Panagiotopoulos, T., Nikolakopoulos, I. and Hatzakis, A. (2011). Estimating the disease burden of 2009 pandemic influenza A(H1N1) from surveillance and household surveys in Greece. PLoS ONE 6 e20593. [40] Truelove, S. A., Chitnis, A. S., Heffernan, R. T., Karon, A. E., Haupt, T. E. and Davis, J. P. (2011). Comparison of patients hospitalized with pandemic 2009 influenza A(H1N1) virus infection during the first two pandemic waves in Wisconsin. J. Infect. Dis. 203 828-837. [41] Van Kerkhove, M. D., Vandemaele, K. A. H., Shinde, V., Jaramillo-Gutierrez, G., Koukounari, A., Donnelly, C. A., Carlino, L. O., Owen, R., Paterson, B., Pelletier, L., Vachon, J., Gonzalez, C., Hongjie, Y., Zijian, F., Chuang, S. K., Au, A., Buda, S., Krause, G., Haas, W., Bonmarin, I., Taniguichi, K., Nakajima, K., Shobayashi, T., Takayama, Y., Sunagawa, T., Heraud, J. M., Orelle, A., Palacios, E., van der Sande, M. A. B., Wielders, C. C. H. L., Hunt, D., Cutter, J., Lee, V. J., Thomas, J., Santa-Olalla, P., Sierra-Moros, M. J., Hanshaoworakul, W., Ungchusak, K., Pebody, R., Jain, S., Mounts, A. W. and on behalf of the WHO Working Group for Risk Factors forSevere H1N1pdm Infection (2011). Risk factors for severe outcomes following 2009 influenza A(H1N1) infection: A global pooled analysis. PLoS Med 8 e1001053+. [42] Welton, N. J. and Ades, A. E. (2005). A model of toxoplasmosis incidence in the UK: Evidence synthesis and consistency of evidence. J. R. Stat. Soc. Ser. C. Appl. Stat. 54 385-404. · Zbl 1490.62382 · doi:10.1111/j.1467-9876.2005.00490.x [43] Wielders, C. C. H., van Lier, E. A., van’t Klooster, T. M., van Gageldonk-Lafeber, A. B., van den Wijngaard, C. C., Haagsma, J. A., Donker, G. A., Meijer, A., van der Hoek, W., Lugnér, A. K., Kretzschmar, M. E. E. and van der Sande, M. A. B. (2012). The burden of 2009 pandemic influenza A(H1N1) in the Netherlands. The European Journal of Public Health 22 150-157. [44] Wilson, N. and Baker, M. G. (2009). The emerging influenza pandemic: Estimating the case fatality ratio. Euro Surveill. 14 . [45] Wong, J. Y., Kelly, H., Ip, D. K., Wu, J. T., Leung, G. M. and Cowling, B. J. (2013). Case fatality risk of influenza A(H1N1pdm09): A systematic review. Epidemiology ( Cambridge , Mass. ) 24 830-841. [46] Wu, J. T., Ma, E. S. K., Lee, C. K., Chu, D. K. W., Ho, P.-L., Shen, A. L., Ho, A., Hung, I. F. N., Riley, S., Ho, L. M., Lin, C. K., Tsang, T., Lo, S.-V., Lau, Y.-L., Leung, G. M., Cowling, B. J. and Peiris, J. S. M. (2010). The infection attack rate and severity of 2009 pandemic H1N1 influenza in Hong Kong. Clinical Infectious Diseases 51 1184-1191. [47] Yang, J.-R., Huang, Y.-P., Chang, F.-Y., Hsu, L.-C., Lin, Y.-C., Su, C.-H., Chen, P.-J., Wu, H.-S. and Liu, M.-T. (2011). New variants and age shift to high fatality groups contribute to severe successive waves in the 2009 influenza pandemic in Taiwan. PLoS ONE 6 e28288+. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.