×

On the modular representations of degree two of \(\text{Gal}({\overline {\mathbb Q}}/{\mathbb Q})\). (Sur les représentations modulaires de degré 2 de \(\text{Gal}({\overline {\mathbb Q}}/{\mathbb Q})\).) (French) Zbl 0641.10026

In the present paper the author precises a very interesting conjecture stated in 1973: If \(\rho\) is an irreducible odd representation of \(G_{{\mathbb Q}}\) to \(\mathrm{GL}(2,{\overline {\mathbb F}}_ p)\) then it should be modular in the following sense: There exists a parabolic cusp form \(f\) of level \(N\), weight \(k\) and character \(\varepsilon\) with coefficients in \({\overline {\mathbb F}}_ p\) [cf. N. M. Katz, \(p\)-adic properties of modular schemes and modular forms, Lect. Notes Math. 350, 69–190 (1973; Zbl 0271.10033)] such that the trace of the image of Frobenius elements \(\pi_{\ell}\) of primes \(\ell \nmid N\) is equal to the \(\ell\)th Fourier coefficient of \(f\) and \(\det\;\rho\) \(=\varepsilon \cdot \chi^{k-1}\) (\(\chi\) cyclotomic character mod \(p\)).
Moreover there is a precise recipe how to determine \(N\), \(k\) and \(\varepsilon\): \(N\) is the Artin conductor of \(\rho\) away from \(p\), and \(k\) is determined by the restriction of \(\rho\) to an inertia group \(I_ p\) at \(p\). For instance: \(k\) is equal to 2 iff \(\det\;\rho| I_ p=\chi\) and the group scheme corresponding to \(\rho | G_{{\mathbb Q}_ p}\) has an extension to a flat finite group scheme over \({\mathbb Z}_ p\) (i.e. \(\rho\) is finite at \(p\)).
This conjecture has very strong and interesting consequences which can be found in § 4. For example: Take \(E/{\mathbb Q}\) as elliptic curve which is semi-stable at \(p\), and take \(\rho =\rho_{E_ p}\) as the representation induced by the action of \(G_{{\mathbb Q}}\) on the points of order \(p\) of \(E\). \(\rho_{E_ p}\) is finite at \(p\) (and hence \(k=2)\) iff \(\mathrm{Min}\{0,v_ p(j_ E)\}\equiv 0 \pmod p.\) For given \(E\) this is so for infinitely many \(p\), and so one gets surprisingly that \(E\) is a quotient of the Jacobian of \(X_ 0(N_ E)\) with \(N_ E\) the conductor of \(E\). Hence Serre’s conjecture implies Taniyama’s conjecture claiming that every elliptic curve over \({\mathbb Q}\) is modular. (For an extension to abelian varieties with real multiplications cf. 4.7.)
On the other side a beautiful result of K. Ribet [On modular representations of \(\text{Gal}({\overline {\mathbb Q}}/{\mathbb Q})\) arising from modular forms; Preprint # 06420-87; Math. Res. Inst. Berkeley, CA (1987)] states that if one assumes that \(E/{\mathbb Q}\) is modular and some reasonable conditions are satisfied then Serre’s conjecture is true for \(\rho_{E_ p}\). This can be applied to Fermat’s Last Theorem: A nontrivial solution of \(Z^p_ 1-Z^p_ 2=Z^p_ 3\) \((p\geq 3)\) can be used to define an elliptic curve over \({\mathbb Q}\) which, due to Ribet’s theorem, cannot be modular [cf. the reviewer, Links between stable elliptic curves and certain Diophantine equations, Ann. Univ. Sarav., Ser. Math. 1, No. 1 (1986; Zbl 0586.10010)]. Hence Taniyama’s conjecture (and so Serre’s conjecture) implies Fermat’s Last Theorem.
In the last section of the paper one finds interesting examples (for \(p=2, 3, 7\)) for which Serre’s conjecture is verified (at least partly) mostly by using computer programs implemented by J.-F. Mestre.
Reviewer: G. Frey

MSC:

11F80 Galois representations
11F33 Congruences for modular and \(p\)-adic modular forms
11G05 Elliptic curves over global fields
11R32 Galois theory
11R39 Langlands-Weil conjectures, nonabelian class field theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] E. Artin, Zur Theorie der \(L\)-Reihen mit allgemeinen Gruppencharakteren , Hamb. Abh. 8 (1930), 292-306, ( = coll. P., 165-179). · JFM 56.0173.02
[2] A. Ash and G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues , J. Crelle Math. 365 (1986), 192-220. · Zbl 0596.10026
[3] A. O. L. Atkin and W. Li, Twists of newforms and pseudo-eigenvalues of \(W\)-operators , Invent. Math. 48 (1978), no. 3, 221-243. · Zbl 0369.10016
[4] B. J. Birch and W. Kuyk, Modular Forms of One Variable, IV , Lect. Notes in Math., vol. 476, Springer-Verlag, 1975. · Zbl 0315.14014
[5] S. Bloch, Algebraic cycles and values of \(L\)-functions. II , Duke Math. J. 52 (1985), no. 2, 379-397. · Zbl 0628.14006
[6] A. Brumer and K. Kramer, The rank of elliptic curves , Duke Math. J. 44 (1977), no. 4, 715-743. · Zbl 0376.14011
[7] J. P. Buhler, Icosahedral Galois Representations , Lecture Notes in Mathematics, vol. 654, Springer-Verlag, Berlin, 1978. · Zbl 0374.12002
[8] H. Carayol, Sur les représentations \(l\)-adiques associées aux formes modulaires de Hilbert , Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 409-468. · Zbl 0616.10025
[9] P. Deligne, Les constantes des équations fonctionnelles des fonctions \(L\) , Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, 501-597. Lecture Notes in Math., Vol. 349. · Zbl 0271.14011
[10] P. Deligne, Valeurs de fonctions \(L\) et périodes d’intégrales , Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 313-346. · Zbl 0449.10022
[11] P. Deligne and J.-P. Serre, Formes modulaires de poids \(1\) , Ann. Sci. École Norm. Sup. (4) 7 (1974), 507-530 (1975). · Zbl 0321.10026
[12] P. Dénes, Über die Diophantische Gleichung \(x^ l+y^ l=cz^ l\) , Acta Math. 88 (1952), 241-251. · Zbl 0048.27503
[13] 1 G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , Invent. Math. 73 (1983), no. 3, 349-366. · Zbl 0588.14026
[14] 2 G. Faltings, Erratum: “Finiteness theorems for abelian varieties over number fields” , Invent. Math. 75 (1984), no. 2, 381. · Zbl 0588.14026
[15] G. Faltings, G. Wüstholz, et al., Rational points , Aspects of Mathematics, E6, Friedr. Vieweg & Sohn, Braunschweig, 1984. · Zbl 0588.14027
[16] J.-M. Fontaine, Il n’y a pas de variété abélienne sur \(\mathbf Z\) , Invent. Math. 81 (1985), no. 3, 515-538. · Zbl 0612.14043
[17] G. Frey, Rationale Punkte auf Fermatkurven und getwisteten Modulkurven , J. Crelle Math. 331 (1982), 185-191. · Zbl 0474.14011
[18] G. Frey, Links between stable elliptic curves and certain Diophantine equations , Ann. Univ. Sarav. Ser. Math. 1 (1986), no. 1, iv+40. · Zbl 0586.10010
[19] A. Grothendieck, Groupes de monodromie en géométrie algébrique. I , Lecture Notes in Mathematics, vol. 288, Springer-Verlag, Berlin, 1972. · Zbl 0237.00013
[20] Y. Hellegouarch, Courbes elliptiques et équation de Fermat , Thèse, Besançon, 1972.
[21] A. Hurwitz, Über endliche Gruppen linearer Substitutionen, welche in der Theorie der elliptischen Transzendenten aufreten , Math. Ann. 27 (1886), 183-233, = Math. W. XI. · JFM 19.0472.01
[22] N. Jochnowitz, A study of the local components of the Hecke algebra mod \(l\) , Trans. Amer. Math. Soc. 270 (1982), no. 1, 253-267. · Zbl 0536.10021
[23] N. Jochnowitz, Congruences between systems of eigenvalues of modular forms , Trans. Amer. Math. Soc. 270 (1982), no. 1, 269-285. JSTOR: · Zbl 0536.10022
[24] N. M. Katz, \(p\)-adic properties of modular schemes and modular forms , Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, 69-190. Lecture Notes in Mathematics, Vol. 350. · Zbl 0271.10033
[25] N. M. Katz, A result on modular forms in characteristic \(p\) , Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, 53-61. Lecture Notes in Math., Vol. 601. · Zbl 0392.10026
[26] S. LaMacchia, Polynomials with Galois group \(\mathrm PSL(2,\,7)\) , Comm. in Algebra 8 (1980), no. 10, 983-992. · Zbl 0436.12005
[27] R. P. Langlands, Base change for \(\mathrm GL(2)\) , Annals of Mathematics Studies, vol. 96, Princeton Univ. Press, Princeton, N.J., 1980. · Zbl 0444.22007
[28] W. Li, Newforms and functional equations , Math. Ann. 212 (1975), 285-315. · Zbl 0278.10026
[29] B. Mazur, Modular curves and the Eisenstein ideal , Inst. Hautes Études Sci. Publ. Math. (1977), no. 47, 33-186 (1978). · Zbl 0278.10026
[30] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld) , Invent. Math. 44 (1978), no. 2, 129-162. · Zbl 0386.14009
[31] J.-F. Mestre, Courbes hyperelliptiques à multiplications réelles , Séminaire de Théorie des Nombres, 1987-1988 (Talence, 1987-1988), Univ. Bordeaux I, Talence, 1988, Exp. No. 34, 6. · Zbl 0688.14035
[32] J.-F. Mestre, La méthode des graphes. Examples et applications , Taniguchi Symp., Kyoto, 1986, à paraître. · Zbl 0621.14021
[33] I. Miyawaki, Elliptic curves of prime power conductor with \(\mathbf Q\)-rational points of finite order , Osaka J. Math. 10 (1973), 309-323. · Zbl 0269.14012
[34] O. Neumann, Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. II , Math. Nachr. 56 (1973), 269-280. · Zbl 0277.14011
[35] J. Tate and F. Oort, Group schemes of prime order , Ann. Sci. École Norm. Sup. (4) 3 (1970), 1-21. · Zbl 0195.50801
[36] M. Raynaud, Schémas en groupes de type \((p,\dots, p)\) , Bull. Soc. Math. France 102 (1974), 241-280. · Zbl 0325.14020
[37] K. A. Ribet, Galois action on division points of Abelian varieties with real multiplications , Amer. J. Math. 98 (1976), no. 3, 751-804. JSTOR: · Zbl 0348.14022
[38] C. Schoen, On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle , J. Crelle. Math. 364 (1986), 85-111. · Zbl 0568.14022
[39] J.-P. Serre, Corps Locaux , 3ème édition ed., Hermann, Paris, 1968. · Zbl 0423.12017
[40] J.-P. Serre, Représentations linéaires des groupes finis , 3ème édition ed., Hermann, Paris, 1978. · Zbl 0407.20003
[41] J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures) , 1969/1970, Sém. Delange-Pisot-Poitou, exposé 19 (= Oe. 87). · Zbl 0214.48403
[42] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques , Invent. Math. 15 (1972), no. 4, 259-331. · Zbl 0235.14012
[43] J.-P. Serre, Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer] , Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Springer, Berlin, 1973, 319-338. Lecture Notes in Math., Vol. 317. · Zbl 0276.14013
[44] J.-P. Serre, Formes modulaires et fonctions zêta \(p\)-adiques , Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin, 1973, 191-268. Lecture Notes in Math., Vol. 350. · Zbl 0277.12014
[45] J.-P. Serre, Valeurs propres des opérateurs de Hecke modulo \(l\) , Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, 1974), Soc. Math. France, Paris, 1975, 109-117. Astérisque, Nos. 24-25. · Zbl 0305.10021
[46] J.-P. Serre, Modular forms of weight one and Galois representations , Algebraic number fields: \(L\)-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) ed. A. Fröhlich, Academic Press, London, 1977, pp. 193-268. · Zbl 0366.10022
[47] J.-P. Serre, L’invariant de Witt de la forme \(\mathrm Tr(x^ 2)\) , Comment. Math. Helv. 59 (1984), no. 4, 651-676. · Zbl 0565.12014
[48] J.-P. Serre, Résumé des cours de 1984-1985 , Annuaire du Collège de France (1985), 85-90.
[49] J.-P. Serre, Lettre à J.-F. Mestre , Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) ed. K. Ribet, Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 263-268. · Zbl 0629.14016
[50] J.-P. Serre and J. Tate, Good reduction of abelian varieties , Ann. of Math. (2) 88 (1968), 492-517. JSTOR: · Zbl 0172.46101
[51] B. Setzer, Elliptic curves of prime conductor , J. London Math. Soc. (2) 10 (1975), 367-378. · Zbl 0324.14005
[52] G. Shimura, Introduction to the arithmetic theory of automorphic functions , no. 11, Publ. Math. Soc. Japan, Princeton Univ. Press, 1971. · Zbl 0221.10029
[53] G. Shimura, Class fields over real quadratic fields and Hecke operators , Ann. of Math. (2) 95 (1972), 130-190. JSTOR: · Zbl 0255.10032
[54] J. Tunnell, Artin’s conjecture for representations of octahedral type , Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 2, 173-175. · Zbl 0475.12016
[55] J. Vélu, Courbes modulaires et courbes de Fermat , Séminaire de Théorie des Nombres, 1975-1976 (Univ. Bordeaux I, Talence), Exp. No. 16, Lab. Théorie des Nombres, Centre Nat. Recherche Sci., Talence, 1976, p. 10. · Zbl 0363.14007
[56] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen , Math. Ann. 168 (1967), 149-156. · Zbl 0158.08601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.