×

zbMATH — the first resource for mathematics

Classification of supersingular abelian varieties. (English) Zbl 0641.14008
After studying the structure of supersingular abelian crystals, we can construct the fine moduli spaces of supersingular abelian schemes with some “level structure”. Such a level structure can be recovered from the crystalline cohomology, and can be given to any family of supersingular abelian varieties after slight modification. Therefore supersingular abelian varieties of a given dimension are classified up to isomorphisms by a set of integer invariants (called an “index”) and a finite number of quasi-projective varieties, one for each index.
Reviewer: Li Kezheng

MSC:
14F30 \(p\)-adic cohomology, crystalline cohomology
14K05 Algebraic theory of abelian varieties
14B05 Singularities in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Berthelot, P., Breen, L., Messing, W.: Th?orie de Dieudonn? cristalline II. Lecture Notes in Mathematics, Vol. 930. Berlin Heidelberg New York: Springer 1982 · Zbl 0516.14015
[2] Berthelot, P., Ogus, A.: Notes on crystalline cohomology. Mathematical Notes. Princeton: Princeton University Press 1978 · Zbl 0383.14010
[3] Deligne, P.: La conjecture de Weil II. Publ. Math. IHES52, 137-252 (1980) · Zbl 0456.14014
[4] Demazure, M., Gabriel, P.: Groupes algebraiques. Tome I. Amsterdam: North-Holland 1970
[5] Demazure, M., Grothendieck, A., et al.: SGA 3: Schemas en Groups I, II, III, Lecture Notes in Mathematics 151, 152, 153. Berlin Heidelberg New York: Springer 1970 · Zbl 0212.52810
[6] Demazure, M.: Lectures onp-Divisible groups. (Lecture Notes in Mathematics, Vol. 302). Berlin Heidelberg New York: Springer 1972 · Zbl 0247.14010
[7] Dieudonn?, J.: La geometrie des groupes classiques. Berlin Heidelberg New York: Springer 1955 · Zbl 0067.26104
[8] Grothendieck, A.: EGA III: ?tude cohomologique des faisceaux coherents, Publ. Math. IRES11 (1961),17 (1963)
[9] Grothendieck, A.: Un th?or?me sur les homomorphisms de sch?mas abelians. Invent. Math.2, 59-78 (1966) · Zbl 0147.20302
[10] Hartshorne, R.: Algebraic geometry. GTM 52. Berlin Heidelberg New York: Springer 1977 · Zbl 0367.14001
[11] Katz, N.: Slope filtrations ofF-crystals. Ast?risque63, 113-164 (1979) · Zbl 0426.14007
[12] Manin, Yu.I.: The theory of commutative formal groups over fields of finite characteristic. Russ. Math. Surv.18, 1-80 (1963) · Zbl 0128.15603
[13] Matsumura, H.: Commutative algebra. New York: Benjamin 1970 · Zbl 0211.06501
[14] Mumford, D.: Abelian varieties. Oxford: Oxford University Press 1970 · Zbl 0223.14022
[15] Mumford, D.: Lectures on curves on an algebraic surface, Ann. Math. Stud.59, 1-212 (1966) · Zbl 0187.42701
[16] Nygaard, N., Ogus, A.: Tate’s conjectures for k3 surfaces of finite height. Ann. Math.122, 461-507 (1985) · Zbl 0591.14005
[17] Oda, T.: The first De Rham cohomology group and Dieudonn? modules. Ann. Sci. Ec. Norm. Sup.2, 63-135 (1969) · Zbl 0175.47901
[18] Oda, T., Oort, F.: Supersingular abelian varieties, Intl. Symp. on Algebraic Geometry, 595-621. Kyoto (1977)
[19] Ogus, A.: Supersingular K3 crystals, Ast?risque64, 3-86 (1979) · Zbl 0435.14003
[20] Oort, F.: Commutative group schemes. Lecture Notes in Mathematics, Vol. 15, Berlin Heidelberg New York: Springer 1966 · Zbl 0216.05603
[21] Oort, F.: Which abelian surfaces are product of elliptic curves? Math. Ann.214, 35-47 (1975) · Zbl 0291.14014
[22] Oort, F.: Subvarieties of moduli spaces. Invent. Math.24, 95-119 (1974) · Zbl 0271.14016
[23] Shioda, T.: Supersingular K3 surfaces, algebraic geometry. Copenhagen 1978. (Lecture Notes in Mathematics, Vol. 732). Berlin Heidelberg New York: Springer 1978 · Zbl 0405.14021
[24] Tate, J., Oort, F.: Group schemes of prime order. Ann. Sci. Ec. Norm. Sup. 4 ser. 3, 1-21 (1970) · Zbl 0195.50801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.