zbMATH — the first resource for mathematics

Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil. (Fourier transformation, constants of the functional equations and Weil conjecture). (French) Zbl 0641.14009
In 1976, P. Deligne introduced a Fourier transformation into algebraic geometry, i.e. an involution for \(\ell\)-adic sheaves on the affine line (more generally on a vector bundle over a scheme of finite type) over a field k of finite characteristic \(p\neq \ell\) (depending on a character \({\mathbb{F}}_ p\to {\mathbb{Q}}_{\ell})\). The properties of this Fourier transformation have been studied by N. M. Katz and the author [Publ. Math., Inst. Hautes Étud. Sci. 62, 145-02 (1985; Zbl 0603.14015)]. In the present paper a local version of Fourier transformation is introduced, defined on \(\ell\)-adic representations of the Galois group of a local field of equal characteristic. At the end of the paper, these Fourier transformations are used to give a new proof of the main result of Deligne’s paper [P. Deligne, Publ. Math., Inst. Haut. Étud. Sci. 52, 137-52 (1980; Zbl 0456.14014) which in turn implies the part of the Weil conjectures which is the analog of the Riemann hypothesis.
The main part of the paper is devoted to Grothendieck’s L-function for a complex K of \(\ell\)-adic sheaves on a curve X over k. This L-function satisfies a functional equation for \(t\to t^{-1}\) in which a constant \(\epsilon\) (X,K) appears. The main result of the paper under review expresses this constant as a product of local constants in the places of the curve. The proof of this product formula reduces to the case \(X={\mathbb{P}}^ 1\) and then uses the Fourier transformation to investigate a one parameter deformation of a certain complex.
The author also explains the relevance of his product formula for Langlands’ conjectures on the corresondence between L-functions and automorphic representations.
Reviewer: F.Herrlich

14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
14G15 Finite ground fields in algebraic geometry
11S37 Langlands-Weil conjectures, nonabelian class field theory
14G99 Arithmetic problems in algebraic geometry; Diophantine geometry
Full Text: DOI Numdam EuDML
[1] E. Artin andJ. Tate,Class field theory, New York, Benjamin (1967). · Zbl 1179.11040
[2] A. A. Beilinson, I. N. Bernstein etP. Deligne, Faisceaux pervers, dansAnalyse et topologie sur les espaces singuliers (I), Conférence de Luminy, juillet 1981,Astérisque 100 (1982).
[3] A. Borel, Automorphic L-functions, inAutomorphic Forms, Representations and L-functions. Proc. Sympos, Pure Math., vol. 33, part 2, Amer. Math. Soc., Providence, R. I. (1979), 27–61.
[4] A. Borel andH. Jacquet, Automorphic Forms and Automorphic Representations, inAutomorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., vol. 33, part 1, Amer. Math. Soc., Providence, R. I. (1979), 189–202. · Zbl 0414.22020
[5] J.-L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques,Astérisque 140–141 (1986), 3–134.
[6] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, dansModular Functions of One Variable II,Lecture Notes in Math., vol. 349, Springer-Verlag (1973), 55–106.
[7] P. Deligne,Les constantes des équations fonctionnelles des fonctions L, Séminaire à l’I.H.E.S., 1980, notes de L. Illusie.
[8] P. Deligne, La conjecture de Weil I,Publ. Math. I.H.E.S.,43 (1974), 273–307.
[9] P. Deligne, La conjecture de Weil II,Publ. Math. I.H.E.S.,52 (1981), 313–428.
[10] P. Deligne,Lettre à D. Kazhdan, 29 novembre 1976.
[11] P. Deligne,Lettre à J.-P. Serre, février 1974.
[12] P. Deligne,Lettre à J.-L. Verdier, 22 avril 1982.
[13] V. G. Drinfeld, Langlands’ Conjecture for GL(2) over Functional Fields,Proceedings of the International Congress of Mathematicians, Helsinki (1978), 565–574.
[14] V. G. Drinfeld, Two-dimensional -adic Representations of the Fundamental Group of a Curve over a Finite Field and Automorphic Forms on GL(2),Amer. J. of Math.,105 (1983), 85–114. · Zbl 0536.14014 · doi:10.2307/2374382
[15] V. G. Drinfeld, Two-dimensional -adic Representations of the Galois Group of a Global Field of Characteristicp and Automorphic Forms on GL(2) (en russe),Zapiski Nayčnyh Seminarov LOM I,134 (1984), 138–156.
[16] B. Dwork, On the Artin Root Number,Amer. J. of Math. 78 (1956), 444–472. · Zbl 0074.26601 · doi:10.2307/2372524
[17] R. Godement andH. Jacquet, Zeta Functions of Simple Algebras,Lecture Notes in Math., vol. 260, Springer-Verlag (1972). · Zbl 0244.12011
[18] A. Grothendieck, Formule de Lefschetz et rationalité des fonctions L,Séminaire Bourbaki 1964–1965, no 279, dansDix exposés sur la cohomologie des schémas, Amsterdam, North-Holland (1968).
[19] G. Henniart, Les inégalités de Morse (d’après E. Witten),Séminaire Bourbaki 1983–1984, no 617,Astérisque 121–122 (1985), 43–61.
[20] G. Henniart,Lettre à l’auteur, 27 mars 1986.
[21] H. Jacquet andR. P. Langlands, Automorphic Forms on GL(2),Lecture Notes in Math., vol. 114, Springer-Verlag (1970). · Zbl 0236.12010
[22] N. M. Katz, Gauss Sums, Kloosterman Sums and Monodromy Groups, to be published inAnnals of Mathematics Studies, Princeton University Press.
[23] N. M. Katz, Extensions of Representations of Fundamental Groups,Ann. Inst. Fourier, à paraître. · Zbl 0564.14013
[24] N. M. Katz, Wild Ramification and some Problems of “Independence of ”,Amer. J. of Math. 105, (1983), 201–227. · Zbl 0568.14012 · doi:10.2307/2374386
[25] N. M. Katz,Communication personnelle à l’auteur, février 1986.
[26] N. M. Katz etG. Laumon, Transformation de Fourier et majoration de sommes exponentielles,Publ. Math. I.H.E.S.,62 (1985), 361–418. · Zbl 0603.14015
[27] H. Koch, Bemerkungen zur Numerischen Lokalen Langlands-Vermutung,Trudy Matematičeskogo Instituta AN, SSSR,163 (1984), 108–114.
[28] H. Koch, Classification of the Primitive Representations of the Galois Groups of Local Fields,Invent. Math. 40 (1977), 195–216. · Zbl 0376.12003 · doi:10.1007/BF01390345
[29] R. P. Langlands,On the Functional Equation of the Artin L-functions, Yale University (1969?).
[30] R. P. Langlands, Problems in the Theory of Automorphic Forms, inLectures in Modern Analysis and Applications III,Lecture Notes in Math., vol. 170, Springer-Verlag (1970), 18–86.
[31] G. Laumon, Majoration de sommes exponentielles attachées aux hypersurfaces diagonales,Ann. Scient. Ec. Norm. Sup.,16 (1983), 1–58. · Zbl 0518.10043
[32] G. Laumon, Comparaison de caractéristiques d’Euler-Poincaré en cohomologie -adique,C. R. Acad. Sc. Paris,292 (1981), 209–212. · Zbl 0468.14005
[33] G. Laumon, Semi-continuité du conducteur de Swan (d’après P. Deligne), dansCaractéristique d’Euler-Poincaré, Séminaire E.N.S. 1978–1979,Astérisque 82–83 (1981), 173–219.
[34] G. Laumon, Les constantes des équations fonctionnelles des fonctions L sur un corps global de caractéristique Positive,C. R. Acad. Sc. Paris,298 (1984), 181–184. · Zbl 0567.14016
[35] I. Piatetski-Shapiro,Zeta Function of GL(n), Preprint, University of Maryland (1976).
[36] I. Piatetski-Shapiro, Multiplicity One Theorems, inAutomorphic Forms, Representations and L-functions, Proc. Sympos. Pure Math., vol. 33, part 1, Amer. Math. Soc., Providence, R. I. (1979), 209–212.
[37] M. Raynaud, Caractéristiques d’Euler-Poincaré d’un faisceau et cohomologie des variétés abéliennes (d’après Ogg-Shafarévitch et Grothendieck),Séminaire Bourbaki 1964–1965, no 286, dansDix exposés sur la cohomologie des schémas, Amsterdam, North-Holland (1968).
[38] J.-P. Serre,Corps locaux, Paris, Hermann (1968).
[39] J.-P. Serre,Représentations linéaires des groupes finis, Paris, Hermann (1971).
[40] J.-P. Serre,Groupes algébriques et corps de classes, Paris, Hermann (1959). · Zbl 0097.35604
[41] J.-P. Serre, Sur la rationalité des représentations d’Artin,Ann. of Math.,72 (1960), 406–420. · Zbl 0202.32803 · doi:10.2307/1970142
[42] J.-P. Serre, Zeta and L-Functions, inArithmetic Algebraic Geometry, New York, Harper & Row (1965), 82–92.
[43] J.-P. Serre andJ. Tate, Good Reduction of Abelian Varieties,Ann. of Math.,88 (1968), 492–517. · Zbl 0172.46101 · doi:10.2307/1970722
[44] J. Tate, Fourier Analysis in Number Fields and Hecke’s Zeta-Functions, inAlgebraic Number Theory (J. W. S. Cassels andA. Fröhlich), London, Academic Press (1967), 305–347.
[45] J. Tate, Local constants, inProc. Durham Sympos. on Algebraic Number Fields, London, Academic Press (1977), 89–131.
[46] A. Weil, Dirichlet Series and Automorphic Forms,Lecture Notes in Math., vol. 189, Springer-Verlag (1971). · Zbl 0218.10046
[47] A. Weil, L’avenir des mathématiques,Bol. Sao Paulo, 1 (1946), 55–68. · Zbl 0061.00614
[48] E. Witten, Supersymmetry and Morse Theory,J. of Diff. Geometry,17 (1982), 661–692.
[49] Séminaire de Géométrie algébrique du Bois-Marie. Théorie des topos et cohomologie étale des schémas, dirigé parM. Artin, A. Grothendieck etJ.-L. Verdier,Lecture Notes in Math., vol. 269, 270 et 305, Springer-Verlag (1972 et 1973).
[50] Cohomologie étale, parP. Deligne, avec la collaboration deJ.-F. Boutot, A. Grothendieck, L. Illusie etJ.-L. Verdier,Lecture Notes in Math., vol. 569, Springer-Verlag (1977).
[51] Cohomologie -adique et fonctions L, dirigé parA. Grothendieck, avec la collaboration deI. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou etJ.-P. Serre,Lecture Notes in Math., vol. 589, Springer-Verlag (1977).
[52] Théorie des intersections et théorème de Riemann-Roch, dirigé parP. Berthelot, A. Grothendieck etL. Illusie, avec la collaboration deD. Ferrand, J.-P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud, J.-P. Serre,Lecture Notes in Math., vol. 225, Springer-Verlag (1971).
[53] Groupes de monodromie en géométrie algébrique, dirigé parA. Grothendieck avec la collaboration deM. Raynaud etD. S. Rim pour la partie I et parP. Deligne etN. Katz pour la partie II,Lecture Notes in Math., vol. 288 et 340, Springer-Verlag (1972 et 1973).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.