zbMATH — the first resource for mathematics

Invariant Kähler-Einstein metrics on compact homogeneous spaces. (English. Russian original) Zbl 0641.53050
Funct. Anal. Appl. 20, 171-182 (1986); translation from Funkts. Anal. Prilozh. 20, No. 3, 1-16 (1986).
The problem of describing homogeneous Einstein metrics presents great interest from the point of view of geometry, as well as of physical applications. Metrics of Riemannian symmetric spaces and of isotropically irreducible spaces, and Bergman metrics of homogeneous bounded regions are well-known examples of such metrics. Other examples of homogeneous Einstein metrics are known. The present work is dedicated to the explicit description of homogeneous Kähler-Einstein metrics on compact manifolds. From the results [J. L. Koszul, Can. J. Math. 7, 562–576 (1955; Zbl 0066.16104); J. Hano, Am. J. Math. 79, 885–900 (1957; Zbl 0096.16203), and Y. Matsushima, Nagoya Math. J. 46, 161–173 (1972; Zbl 0249.53050)] it follows that these metrics exhaust all nonplanar nonsymmetric Kähler-Einstein metrics admitting a transitive group of isometries, as well as all Kähler-Einstein metrics on compact manifolds admitting a transitive group of holomorphic transformations.

53C30 Differential geometry of homogeneous manifolds
53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C55 Global differential geometry of Hermitian and Kählerian manifolds
Full Text: DOI
[1] A. Besse, Table Ronde sur les vari?t?s d’Einstein, Paris (1980).
[2] M. Berger, ”Rapport sur les vari?t?s d’Einstein,” Soc. Math. France, Asterisque,80, 5-19 (1980). · Zbl 0473.53039
[3] A. M. Perelomov, ”Instanton type solutions in chiral models,” Usp. Fiz. Nauk,134, No. 4, 577-607 (1980). · doi:10.3367/UFNr.0134.198108a.0577
[4] Geometric Ideas in Physics. Collection of Articles [Russian translation], Mir, Moscow (1983).
[5] W. Ziller, ”Homogeneous Einstein metrics,” Glob. Riem. Geom. Symp., Durham, 1983, Chichester, 126-135 (1984).
[6] J. L. Koszul, ”Sur la forme hermitienne canonique des espace homogenes complexes,” Can. J. Math.,7, No. 4, 562-576 (1955). · Zbl 0066.16104 · doi:10.4153/CJM-1955-061-3
[7] J. Hano, ”On Kaehlerian homogeneous space of unimodular Lie groups,” Am. Math J.,15, 885-900 (1957). · Zbl 0096.16203 · doi:10.2307/2372440
[8] Y. Matsushima, ”Remarks on Kaehler?Einstein manifolds,” Nagoya Math. J.,46, 161-173 (1972). · Zbl 0249.53050
[9] Sh. Kobayasi and K. Nomidzu, Foundations of Differential Geometry [in Russian], Nauka, Moscow (1981).
[10] A. Borel and F. Hirzebruch, ”Characteristic classes and homogeneous spaces. I,” Am. J. Math.,80, No. 2, 458-538 (1958). · Zbl 0097.36401 · doi:10.2307/2372795
[11] A. M. Perelomov and M. C. Prati, ”Exact Gell-Mann function of supersymmetric K?hler sigma models. II,” Nucl. Phys. B,258, 647-660 (1985). · doi:10.1016/0550-3213(85)90629-7
[12] A. Yu. Morozov, A. M. Perelomov, and M. A. Shifman, ”Exact Gell-Mann?Low function of supersymmetric K?hler sigma models. I,” Nucl. Phys. B,248, 279-300 (1984). · doi:10.1016/0550-3213(84)90598-4
[13] N. Bourbaki, Lie Groups and Lie Algebras [Russian translation], Mir, Moscow (1972), Chaps. 4-6. · Zbl 0249.22001
[14] N. Bourbaki, Lie Groups and Lie Algebras [Russian translation], Mir, Moscow (1978), Chaps. 7-8.
[15] J. Siebenthal, ”Sur certains modules dans une algebre de Lie semisimple,” Comment. Math. Helv.,44, No. 1, 1-44 (1969). · Zbl 0185.08601 · doi:10.1007/BF02564509
[16] D. V. Alekseevskii and A. M. Perelomov, ”Invariant K?hler?Einstein metrics on compact homogeneous spaces,” Preprint, Institute of Theoretical and Experimental Physics, No. 101, 102, 1-42 (1985).
[17] M. Bordemann, M. Forger, and H. R?mer, ”Homogeneous K?hler manifolds: paving the way towards new supersymmetric sigma models,” Preprint, CERN, TH 4111/85, 1-60. · Zbl 0585.53018
[18] D. Page and C. Pope, ”Inhomogeneous Einstein metrics on complex line bundles,” Preprint, Inst. Adv. Study, Princeton, 1-21 (1985). · Zbl 0613.53020
[19] M. Itoh, ”On K?hler metric on a compact homogeneous manifold,” Tohoku Math. J.,28. No. 1, 1-5 (1976). · Zbl 0328.53049 · doi:10.2748/tmj/1178240876
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.