Fixed point results via \(\alpha\)-admissible mappings and cyclic contractive mappings in partial \(b\)-metric spaces. (English) Zbl 1489.54169

Summary: Considering \(\alpha\)-admissible mappings in the setup of partial \(b\)-metric spaces, we establish some fixed and common fixed point results for ordered cyclic weakly \((\psi, \varphi, L, A, B)\)-contractive mappings in complete ordered partial \(b\)-metric spaces. Our results extend several known results in the literature. Examples are also provided in support of our results.


54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
54E40 Special maps on metric spaces
Full Text: DOI


[1] Czerwik S: Contraction mappings inb-metric spaces.Acta Math. Inform. Univ. Ostrav. 1993, 1:5-11. · Zbl 0849.54036
[2] Matthews, SG, Partial metric topology, 183-197 (1994) · Zbl 0911.54025
[3] Shukla, S., Partial b-metric spaces and fixed point theorems (2014) · Zbl 1291.54072
[4] Mustafa, Z.; Roshan, JR; Parvaneh, V.; Kadelburg, Z., Some common fixed point results in ordered partial b-metric spaces, No. 2013 (2013) · Zbl 1489.54180
[5] Kirk WA, Srinivasan PS, Veeramani P: Fixed points for mappings satisfying cyclical contractive conditions.Fixed Point Theory 2003,4(1):79-89. · Zbl 1052.54032
[6] Berinde V: General constructive fixed point theorems for Ćirić-type almost contractions in metric spaces.Carpath. J. Math. 2008, 24:10-19. · Zbl 1199.54209
[7] Berinde V: Some remarks on a fixed point theorem for Ćirić-type almost contractions.Carpath. J. Math. 2009, 25:157-162. · Zbl 1249.54078
[8] Babu GVR, Sandhya ML, Kameswari MVR: A note on a fixed point theorem of Berinde on weak contractions.Carpath. J. Math. 2008, 24:8-12. · Zbl 1199.54205
[9] Ćirić L, Abbas M, Saadati R, Hussain N: Common fixed points of almost generalized contractive mappings in ordered metric spaces.Appl. Math. Comput. 2011, 217:5784-5789. 10.1016/j.amc.2010.12.060 · Zbl 1206.54040 · doi:10.1016/j.amc.2010.12.060
[10] Aghajani A, Radenović S, Roshan JR:Common fixed point results for four mappings satisfying almost generalized[InlineEquation not available: see fulltext.]-contractive condition in partially ordered metric spaces.Appl. Math. Comput. 2012, 218:5665-5670. 10.1016/j.amc.2011.11.061 · Zbl 1245.54035 · doi:10.1016/j.amc.2011.11.061
[11] Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distances between the points.Bull. Aust. Math. Soc. 1984, 30:1-9. 10.1017/S0004972700001659 · Zbl 0553.54023 · doi:10.1017/S0004972700001659
[12] Shatanawi, W.; Postolache, M., Common fixed point results of mappings for nonlinear contraction of cyclic form in ordered metric spaces, No. 2013 (2013) · Zbl 1286.54053
[13] Hussain, N.; Parvaneh, V.; Roshan, JR; Kadelburg, Z., Fixed points of cyclic weakly [InlineEquation not available: see fulltext.]-contractive mappings in ordered b-metric spaces with applications, No. 2013 (2013)
[14] Samet B, Vetro C, Vetro P: Fixed point theorem forα-ψ-contractive type mappings.Nonlinear Anal. 2012, 75:2154-2165. 10.1016/j.na.2011.10.014 · Zbl 1242.54027 · doi:10.1016/j.na.2011.10.014
[15] Berinde V: Contracţii generalizate şi aplicaţii. Editura Club Press 22, Baia Mare; 1997. · Zbl 0885.47022
[16] Berinde V: Sequences of operators and fixed points in quasimetric spaces.Stud. Univ. Babeş-Bolyai, Math. 1996,16(4):23-27. · Zbl 1005.54501
[17] Berinde, V., Generalized contractions in quasimetric spaces, 3-9 (1993) · Zbl 0878.54035
[18] Karapinar, E.; Kumam, P.; Salimi, P., On α-ψ-Meir-Keeler contractive mappings, No. 2013 (2013) · Zbl 1423.54083
[19] Rus IA: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca; 2001. · Zbl 0968.54029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.