On capacity regions of discrete asynchronous multiple access channels. (English) Zbl 1395.94250

Summary: A general formalization is given for asynchronous multiple access channels which admits different assumptions on delays. This general framework allows the analysis of so far unexplored models leading to new interesting capacity regions. The main result is the single letter characterization of the capacity region in case of 3 senders, 2 synchronous with each other and the third not synchronous with them.


94A40 Channel models (including quantum) in information and communication theory
94A15 Information theory (general)
Full Text: arXiv Link


[1] Ahlswede, R.: Multi-way communication channels. Proc. 2nd International Symposium on Information Theory, Tsahkadsor, Armenian SSR (1971), Akadémiai Kiadó, Budapest, pp. 23-52. · Zbl 0278.94006
[2] Bierbaum, M., Wallmeier, H. M.: A note on the capacity region of the multi-access channel. IEEE Trans. Inform. Theory 25 (1979), 484. · Zbl 0409.94010
[3] Cover, T. M., McEliece, R. J., Posner, E. C.: Asynchronous multiple-acces channel capacity. IEEE Trans. Inform. Theory 27 (1981), 409-413. · Zbl 0459.94016
[4] Csiszár, I., Körner, J.: Information theory, Coding theorems for Discrete Memoryless Systems Second edition. Cambridge University Press, Cambridge 2011. · Zbl 1256.94002
[5] Farkas, L., Kói, T.: Capacity region of discrete asynchronous multiple access channels. Int. Symp. Inform. Theory Proc. (ISIT) 19 (2011), 2273-2277.
[6] Farkas, L., Kói, T.: Capacity regions of partly asynchronous multiple access channels. Int. Symp. Inform. Theory Proc. (ISIT) 20 (2012), 3018-3022.
[7] Gamal, A. El, Kim, Y.-H.: Network Information Theory. Cambridge University Press, Cambridge 2012 · Zbl 1238.94001
[8] Grant, A. J., Rimoldi, B., Urbanke, R. L., Whiting, P. A.: Rate-splitting multiple acces for discrete memoryless channels. IEEE Trans. Inform. Theory 47 (2001), 873-890. · Zbl 1020.94511
[9] Gray, R. M.: Sliding-block joint source/noisy-channel coding theorems. IEEE Trans. Inform. Theory 22 (1976), 682-690. · Zbl 0348.94019
[10] Hanly, S., Whiting, P.: Constraints on capacity in a multi-user channel. Int. Symp. Inform. Theory Proc. (ISIT) 4 (1994), 54.
[11] Hui, J. Y. N., Humblet, P. A.: The capacity region of the totally asynchronous multiple-access channel. IEEE Trans. Inform. Theory 31 (1985), 207-216. · Zbl 0561.94003
[12] Liao, H.: Multiple Access Channels. Ph.D. Dissertation, Dept. Elec. Eng., Univ. Hawai, Honolulu 1972.
[13] Rimoldi, B.: Generalized time sharing: A low-complexity capacity-achieving multiple-access technique. IEEE Trans. Inform. Theory 47 (2001), 2432-2442. · Zbl 1021.94516
[14] Tse, D., Hanly, S.: Multi-access fading channels - Part I: Polymatroid structure, optimal resource allocation and throughput capacities. IEEE Trans. Inform. Theory 44 (1998), 2796-2815. · Zbl 0934.94009
[15] Poltyrev, G. Sh.: Coding in an asynchronous multiple-access channel. Problemy Peredachi Informatsii 19 (1983), 12-21. · Zbl 0549.94017
[16] Polyanskiy, Y.: On asynchronous capacity and dispersion. 46th Annual Conference on Information Sciences and Systems (CISS) (2012), pp. 1-6. · Zbl 1355.05174
[17] Tchamkerten, A., Chandar, V., Wornell, G. W.: Communication under strong asynchronism. IEEE Trans. Inform. Theory 55 (2009), 4508-4528. · Zbl 1367.94062
[18] Verdu, S.: Multiple-access channels with memory with and without frame synchronism. IEEE Trans. Inform. Theory 35 (1989), 605-619. · Zbl 0676.94008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.