×

Orthomodular posets can be organized as conditionally residuated structures. (English) Zbl 1320.06003

A conditionally residuated structure is a poset bounded by \(0,1\), endowed with a partial binary operation \(\to\) and a partial multiplication where \(x\cdot y\) is defined if and only if \(x\to 0\leq y\), with unit \(1\), and satisfying commutativity in the strong sense, such that the residuation axioms are satisfied in the weak sense. The main result characterizes those structures which have orthomodular poset reduct.

MSC:

06A11 Algebraic aspects of posets
06C15 Complemented lattices, orthocomplemented lattices and posets
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Bělohlávek, R.: Fuzzy Relational Systems. Foundations and Principles. Kluwer, New York, 2002. · Zbl 1067.03059
[2] Beran, L.: Orthomodular Lattices, Algebraic Approach. Academia, Prague, 1984. · Zbl 0558.06008
[3] Chajda, I., Halaš, R.: Effect algebras are conditionally residuated structures. Soft Computing 15 (2011), 1383-1387. · Zbl 1247.03134 · doi:10.1007/s00500-010-0677-9
[4] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer, Dordrecht, 2000. · Zbl 0987.81005
[5] Engesser, K., Gabbay, D. M., Lehmann, D.: Handbook of Quantum Logic and Quantum Structures - Quantum Logic. Elsevier/North-Holland, Amsterdam, 2009. · Zbl 1184.81003
[6] Foulis, D. J., Bennett, M. K.: Effect algebras and unsharp quantum logics. Found. Phys. 24 (1994), 1331-1352. · Zbl 1213.06004 · doi:10.1007/BF02283036
[7] Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Elsevier, Amsterdam, 2007. · Zbl 1171.03001
[8] Kalmbach, G.: Orthomodular Lattices. Academic Press, London, 1983. · Zbl 0528.06012
[9] Matoušek, M., Pták, P.: Orthocomplemented posets with a symmetric difference. Order 26 (2009), 1-21. · Zbl 1201.06006 · doi:10.1007/s11083-008-9102-8
[10] Navara, M.: Characterization of state spaces of orthomodular structures. Proc. Summer School on Real Analysis and Measure Theory, Grado, Italy, (1997), 97-123.
[11] Pták, P.: Some nearly Boolean orthomodular posets. Proc. Amer. Math. Soc. 126 (1998), 2039-2046. · Zbl 0894.06003 · doi:10.1090/S0002-9939-98-04403-7
[12] Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht, 1991. · Zbl 0743.03039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.