A new trust region method for solving least-square transformation of system of equalities and inequalities. (English) Zbl 1319.90066

Summary: In this paper, a new nonmonotone trust region method with adaptive radius is proposed for solving system of equalities and inequalities. This method combines a new nonmonotone technique with a new adaptive strategy based on the Z.-J. Shi and J.-H. Guo’s adaptive technique in [J. Comput. Appl. Math. 213, No. 2, 509–520 (2008; Zbl 1144.65044)], which makes full use of the current point information. Under some standard assumptions, the global convergence property as well as the superlinear convergence rate are established for the new method. Numerical results on some nonlinear systems of equalities and inequalities indicate the efficiency and robustness of the proposed method in practice.


90C30 Nonlinear programming


Zbl 1144.65044
Full Text: DOI


[1] Ahookhosh, M; Amini, K, A nonmonotone trust region method with adaptive radius for unconstrained optimization, Comput. Math. Appl., 60, 411-422, (2010) · Zbl 1201.90184
[2] Ahookhosh, M; Amini, K, An efficient nonmonotone trust-region method for unconstrained opti-mization, Numer. Algor., 59, 523-540, (2012) · Zbl 1243.65066
[3] Ahookhosh, M; Amini, K; Peyghami, MR, A nonmonotone trust-region line search method for large-scale unconstrained optimization, Appl. Math. Model, 36, 478-487, (2012) · Zbl 1236.90077
[4] Chamberlain, RM; Powell, MJD; Lemarechal, C; Pedersen, HC, The watchdog technique for forcing convergence in algorithm for constrained optimization, Math. Program. Stud., 16, 1-17, (1982) · Zbl 0477.90072
[5] Cui, Z; Wu, B, A new modified nonmonotone adaptive trust region method for unconstrained optimization, Comput. Optim. Appl., 53, 795-806, (2012) · Zbl 1264.90158
[6] Daniel, JW, Newton’s method for nonlinear inequalities, Numer. Math., 6, 381-387, (1973) · Zbl 0293.65039
[7] Dai, YH, On the nonmonotone line search, J. Optim.Theory Appl., 112, 315-330, (2002) · Zbl 1049.90087
[8] Deng, NY; Xiao, Y; Zhou, FJ, Nonmonotonic trust region algorithm, J. Optim.Theory Appl., 76, 259-285, (1993) · Zbl 0797.90088
[9] Dennis, JE; El-Alem, M; Williamson, K, A trust-region approach to nonlinear system of equalities and inequalities, SIAM J. Control Optim., 9, 291-315, (1999) · Zbl 0957.65058
[10] Dolan, E; Moré, JJ, Benchmarking optimization software with performance profiles, Math. Program., 91, 201-213, (2002) · Zbl 1049.90004
[11] Fan, J.Y., Yuan, Y.X.: A new trust region algorithm with trust region radius converging to zero. In: Proceedings of the 5th International Conference on Optimization: Techniques and Applications (2001) · Zbl 1105.90361
[12] Fletcher, R., Leyffer, S.: Filter-type algorithm for solving system of algebraic aquations and inequalities. In: Di Pillo, G., Murli, A. (eds.) High Performance Algorithms and Software for Nonlinear Optimization, pp. 259-278. Kluwer, Dordrecht (2003) · Zbl 0732.65055
[13] Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, Nonconvex Optimization and its Applications, p. 33. Kluwer, Dordrecht (1999) · Zbl 0943.90001
[14] Francisco, JB; Krejis, N; Martinez, JM, An interior-point method for solving box-constraned unconstrained nonlinear system, J. Comput. Appl. Math., 177, 67-88, (2005) · Zbl 1064.65035
[15] Gould, N.I.M., Leyffer, S., Toint, Ph.L.: FILTRANE A Fortran 95 filter-trust-region package for solving nonlinear least-squers and nonlinear feasibility problems. ACM Trans. Math. Softw. 33, 3-25 (2007) · Zbl 1073.90024
[16] Grippo, L; Lamparillo, F; Lucidi, S, A nonmonotone line search technique for newton’s method, SIAM J. Numer. Anal., 23, 707-716, (1986) · Zbl 0616.65067
[17] Grippo, L; Lamparillo, F; Lucidi, S, A truncated Newton method with nonmonotone line search for unconstrained optimization, J. Optim. Theory Appl., 60, 401-419, (1989) · Zbl 0632.90059
[18] Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, p. 187. Springer, Berlin (1981) · Zbl 0452.90038
[19] Macconi, M; Morini, B; Porcelli, M, Trust-region quadratic methods for nonlinear system of mixed equalities and inqualities, Appl. Numer. Math., 59, 859-876, (2009) · Zbl 1165.65030
[20] Mo, J; Liu, C; Yan, S, A nonmonotone trust region method based on nonincreasing technique of weighted avrage of the successive function values, J. Comput. Appl. Math., 209, 97-108, (2007) · Zbl 1142.65049
[21] Moré, JJ; Garbow, BS; Hilstron, KE, Testing unconstrained optimization software, ACM Trans. Math. Softw., 7, 17-41, (1981) · Zbl 0454.65049
[22] Morini, B; Porcelli, M, TRESNEI, a Matlab trust-region solver for systems of nonlinear equalities and inequalities, Comput. Optim. Appl., 51, 27-49, (2012) · Zbl 1244.90224
[23] Nocedal, J; Yuan, Y; Yuan, Y (ed.), Combining trust region and line search techniques, 152-175, (1996), Dordrecht · Zbl 0909.90243
[24] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006) · Zbl 1104.65059
[25] Panier, ER, Avoiding the maratos effect by means of a nonmonotone linesearch, SIAM J. Numer. Anal., 28, 1183-1195, (1991) · Zbl 0732.65055
[26] Porcelli, M, On the convergence of an inexact guass-Newton trust region method for nonlinear least squares problems with simple bounds, Optim. Lett., 7, 447-465, (2013) · Zbl 1268.90091
[27] Sang, Z., Sun, Q.: A self-adaptive trust region method with line search based on a simple subproblem model. J. Comput. Appl. Math. 232, 514-522 (2009) · Zbl 1175.90378
[28] Sartenaer, A, Automatic determination of an initial trust region in nonlinear programming, SIAM J. Sci. Comput., 18, 1788-1803, (1997) · Zbl 0891.90151
[29] Shi, ZJ; Guo, JH, A new trust region methods for unconstrained optimization, J. Comput. Appl. Math., 213, 509-520, (2008) · Zbl 1144.65044
[30] Toint, Ph.L.: An assessment of nonmonotone line search technique for unconstrained optimization. SIAM J. Sci. Comput. 17, 725-739 (1996) · Zbl 0849.90113
[31] Toint, Ph.L.: Nonmonotone trust-region algorithm for nonlinear optimization subject to convex constraints. Math. Program 77, 69-94 (1997) · Zbl 0891.90153
[32] Zhang, H, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim., 14, 1043-1056, (2004) · Zbl 1073.90024
[33] Zhang, XS; Zhang, JL; Liao, LZ, An adaptive trust region method and its convergence, Sci. China., 45, 620-631, (2002) · Zbl 1105.90361
[34] Zhang, XS; Zhang, JL; Liao, LZ, A nonmonotone adaptive trust region method and its convergence, Int. Comput. Math. Appl., 45, 1469-1477, (2003) · Zbl 1065.90071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.