×

zbMATH — the first resource for mathematics

Ordering of observables and characterization of conditional expectation. (English) Zbl 0642.03037
Different types of ordering of observables of a quantum logic are studied and compared. A conditional expectation of an observable with respect to a sublogic is introduced.
Reviewer: A.Dvurečenskij

MSC:
03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
06C15 Complemented lattices, orthocomplemented lattices and posets
81P20 Stochastic mechanics (including stochastic electrodynamics)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] CATLIN D. E.: Spectral theory in quantum logics. Int. J. of Theor. Physics, 1, 1968, 3-16.
[2] DOOB J. L.: Stochastic Processes. London, 1953. · Zbl 0053.26802
[3] DVUREČENSKIJ A., PULMANNOVÁ S.: On the sum of observables in a logic. Math. Slovaca 30, 1980, 393-399. · Zbl 0454.03030
[4] GUDDER S. P.: Hilbert space, independence, and generalized probability. J. of Math. Analysis and Applications 20, 1961, 48-61.
[5] GUDDER S. P.: Spectral methods for a generalized probability theory. Trans. AMS 119, 1965, 428-442. · Zbl 0161.46105
[6] GUDDER S. P.: Uniqueness and existence properties of bounded observables. Pac. J. of Math. 19, 1966, 81-93, 588-590. · Zbl 0149.23603
[7] GUDDER S. P.: Generalized measure theory. Found. Physics 3, 1973, 399-411.
[8] GUDDER S. P., MULLIKIN H. C.: Measure theoretic convergences of observables and operators. J. Math. Phys. 14, 1973, 234-242. · Zbl 0267.28005
[9] GUDDER S. P.: Expectation and transition probability. Int. J. of Theor. Physics 20, 1981, 383-395. · Zbl 0483.03041
[10] GUDDER S. P., ZERBE J.: Generalized monotone convergence and Radon-Nikodym theorems. J. Math. Phys. 22, 1981, 2553-2561. · Zbl 0467.60003
[11] HALMOS P. R.: Measure Theory. New York, 1950. · Zbl 0040.16802
[12] HARMAN B., RIEČAN B.: Martingale convergence in q.m. logic. Trans. 9th Prague Conf. on Inf. Theory, Prague 1983.
[13] LOOMIS S.: On the representation of \sigma -complete Boolean algebras. Bull. AMS. 53, 1947, 757-760. · Zbl 0033.01103
[14] NÁNÁSIOVÁ O., PULMANNOVÁ S.: Relative conditional expectations on a logic. Aplikace matematiky 30, 1985, 332-350. · Zbl 0585.60003
[15] NEUBRUNN T., RIEČAN B.: Miera a integral. VEDA, Bratislava, 1981.
[16] PTÁK P.: Spaces of observables. Czechoslovak Math. Journal 34, 1984, 552-561. · Zbl 0572.28007
[17] PULMANNOVÁ S.: Compatibility and partial compatibility in quantum logics. Ann. Inst. H. Poincaré 34, 1981, 391-403. · Zbl 0469.03045
[18] NEUBRUNN T., PULMANNOVÁ S.: On compatibility in quantum logic. Acta Math. Univ. Comenian XLII-XLIII, 1984, 153-168. · Zbl 0539.03045
[19] SHU-TEN CHEN MOY: Characterization of conditional expectation as a transformation space. Pacif. J. Math. 4, 1954, 47-64. · Zbl 0055.12503
[20] VARADARAJAN V.: Geometry of quantum theory 1. Von Nonstrand 1968. · Zbl 0155.56802
[21] ZIERLER N.: Order properties of bounded observables. Proc. AMS 14, 1963, 346-351. · Zbl 0135.44303
[22] SIKORSKI R.: Boolean Algebras. New York, Springer-Verlag. 1969. · Zbl 0191.31505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.