×

zbMATH — the first resource for mathematics

Expanding maps of solenoids. (English) Zbl 0642.54035
It is proved that compact metric groups which admit expanding maps must be solenoidal groups, and that every expanding map on a solenoidal group is topologically conjugate to a positively expansive group endomorphism.
Reviewer: N.Aoki

MSC:
54H20 Topological dynamics (MSC2010)
22B05 General properties and structure of LCA groups
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aoki, N., Dateyama, M., Komuro, M.: Solenoidal automorphisms with specification. Mh. Math.93, 79-110 (1982). · Zbl 0473.54035
[2] Aoki, N.: Topological stability of solenoidal automorphisms. Nagoya Math. J.90, 119-135 (1983) (Correction to: Topological stability of solenoidal automorphisms, ibid. Nagoya Math. J.95, 103 (1984).) · Zbl 0507.58030
[3] Aoki, N., Dateyama, M.: The relationship between algebraic numbers and expansiveness of automorphisms on compact abelian groups. Fund. Math.117, 21-35 (1983). · Zbl 0509.22008
[4] Brown, M.: The monotone union of openn-cells is an openn-cell. Proc. Amer. Math. Soc.12, 812-814 (1961). · Zbl 0103.39305
[5] Coven, E. M., Reddy, W.: Positively expansive maps of compact manifolds. In: Global Theory of Dynamical Systems, pp. 96-110. Lecture Notes Math. 819. Springer: Berlin-Heidelberg-New York. 1980. · Zbl 0445.58021
[6] Duval, P. F., Husch, L. S.: Analysis on topological manifolds. Fund. Math.77, 75-90 (1972). · Zbl 0246.54050
[7] Eilenberg, E.: Sur quelques propri?t?s des transformations localement homeomorphes. Fund. Math.24, 35-42 (1955). · Zbl 0010.18201
[8] Eisenberg, M.: Expansive transformation semigroups of endomorphisms. Fund. Math.60, 313-321 (1966). · Zbl 0197.19504
[9] Eisenberg, M.: A note on positively expansive endomorphisms. Math. Scand.19, 217-218 (1966). · Zbl 0147.27401
[10] Gromov, M.: Groups of polynomial growth and expanding maps. Publ. I. H. E. S.53, 53-78 (1981). · Zbl 0474.20018
[11] Hemmingsen, E., Reddy, W.: Expansive homeomorphisms on homogeneous spaces. Fund. Math.64, 203-207 (1969). · Zbl 0176.20203
[12] Hiraide, K.: Topological characterization of expansive homeomorphisms of tori satisfying the pseudo orbit tracing property. Preprint. 1984.
[13] Hirsch, M.: Expanding maps and transformation groups. Proc. Sympos. Pure Math.14, 125-131 (1970). · Zbl 0223.58009
[14] Kelly, J. L.: General Topology. Princeton: Van Nostrand. 1955.
[15] Kurosch, A. G.: Theory of Groups I, II. New York: Chelsea. 1960. · Zbl 0064.25104
[16] Ma??, R.: Expansive homeomorphisms and topological dimension. Trans. Amer. Math. Soc.252, 313-319 (1979). · Zbl 0362.54036
[17] Ma??, R., Pugh, C.: Stability of endomorphisms. In: Warwick Dynamical Systems 1974, pp. 175-184. Lecture Notes Math. 468. Berlin-Heidelberg-New York: Springer. 1975.
[18] Manning, A.: There are no new Anosov diffeomorphisms on tori. Amer. J. Math.96, 422-429 (1974). · Zbl 0242.58003
[19] Przytycki, F.: Anosov endomorphisms. Studia Math.58, 249-285 (1976). · Zbl 0357.58010
[20] Pontrjagin, L.: Topological Groups. New York-London-Paris: Gordon and Breach. 1966. · JFM 62.0443.02
[21] Reddy, W.: Expansive maps on compact metric spaces. Topology and its Appl.13, 327-334 (1982). · Zbl 0485.54033
[22] Ruelle, D.: Thermodynamics Formalism. Encyclopedia of Mathematics and its Applications. Addison-Wesley. 1978.
[23] Rosenholtz, L.: Evidence of a conspiracy among fixed point theorems. Proc. Amer. Math. Soc.53, 213-218 (1975). · Zbl 0364.54036
[24] Rosenholtz, L.: Local expansion derivatives and fixed points. Fund. Math.91, 1-4 (1976). · Zbl 0326.54031
[25] Spanier, E.: Algebraic Topology. New York: MacGraw Hill. 1966. · Zbl 0145.43303
[26] Shub, M.: Endomorphisms of compact differentiable manifolds. Amer. J. Math.91, 175-199 (1969). · Zbl 0201.56305
[27] Williams, R. F.: A note on unstable homeomorphisms. Proc. Amer. Math. Soc.6, 305-309 (1955). · Zbl 0067.15402
[28] Williams, R. F.: One dimensional non-wandering sets. Topology6, 473-487 (1967). · Zbl 0159.53702
[29] Williams, R. F.: Classification of one-dimensional attractors. In: Global Analysis, pp. 373-487. Proc. Sympos. Pure Math. 14. Providence: Amer. Math. Soc. 1970. · Zbl 0213.50401
[30] Williams, R. F.: Expanding attractors. Publ. I.H.E.S.43, 133-147 (1973). · Zbl 0279.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.