×

zbMATH — the first resource for mathematics

A counter-example to a \(C^ 2\) closing lemma. (English) Zbl 0642.58036
Let M be a compact manifold containing a two dimensional punctured torus. Given \(p\in M\) and an integer \(r\geq 2\), there exists \(X\in {\mathcal X}^{\infty}(M)\) having non-trivial recurrent orbits and such that, for some neighbourhood \({\mathcal U}\) of \(X|_{(M\setminus \{p\})}\) in \({\mathcal X}^ r(M\setminus \{p\})\) (under the Whitney \(C^ r\) topology), no \(Y\in {\mathcal U}\) has closed orbits.
Reviewer: J.So

MSC:
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory, local dynamics
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] de Melo, Geometric Theory of Dynamical Systems (1982)
[2] Newhouse, Publ. IHES. 57 pp 5– (1983) · Zbl 0518.58031 · doi:10.1007/BF02698773
[3] Lang, Introduction to Diophantine Approximations (1966)
[4] Hirsh, Invariant Manifolds (1977) · doi:10.1007/BFb0092042
[5] Herman, Pub. Math. none pp 5– (none)
[6] Gutierrez, Ergod. Th. & Dynam. Sys. 6 pp 45– (1986)
[7] Gutierrez, Ergod. Th. & Dynam. Sys. 6 pp 17– (1986)
[8] Denjoy, J. Mathematique 9 pp 333– (1932)
[9] Coexeter, Introduction to Geometry (1961)
[10] DOI: 10.1007/BF01389816 · Zbl 0247.58007 · doi:10.1007/BF01389816
[11] Sotomayor, Publ. Math. IHES. 44 pp none– (1974)
[12] Slater, Proc. Camb. Phil. Soc. 63 pp 1115– (1967)
[13] DOI: 10.2307/2373414 · Zbl 0167.21804 · doi:10.2307/2373414
[14] DOI: 10.1016/0022-0396(75)90054-6 · Zbl 0309.34043 · doi:10.1016/0022-0396(75)90054-6
[15] DOI: 10.1016/0022-0396(82)90002-X · Zbl 0506.58029 · doi:10.1016/0022-0396(82)90002-X
[16] DOI: 10.1016/0040-9383(65)90018-2 · Zbl 0107.07103 · doi:10.1016/0040-9383(65)90018-2
[17] Palis, Global Analysis 14 pp 223– (1970) · doi:10.1090/pspum/014/0267603
[18] DOI: 10.2307/2007021 · Zbl 0511.58029 · doi:10.2307/2007021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.