Galperin, A.; Ivanov, E.; Ogievetskij, V.; Sokachev, E. Gauge field geometry from complex and harmonic analyticities. II: Hyper- Kähler case. (English) Zbl 0643.53067 Ann. Phys. 185, No. 1, 22-45 (1988). [For part I, see the review above.] The concept of preservation of harmonic analyticity is applied to find unconstrained prepotentials of hyper-Kähler geometry. We rewrite the \(R^{4n}\) \((n=1,2,...)\) hyper-Kähler constraints in the harmonic space \(R^{4n}\times S\) 2 and then solve them in terms of two prepotentials defined in an analytic subspace. The geometric meaning of prepotentials is revealed with introducing extra central charge coordinates. Working in the analytic basis permits one to define the metric by solving a linear differential equation on S 2. The procedure is illustrated by the Taub- NUT example. We also reproduce the well-known Ward ansatz for the metric and discuss the relation to twistor approaches. Finally, we establish the one-to-one correspondence between hyper-Kähler geometry and off-shell \(d=4\), \(N=2\) supersymmetric \(\sigma\) models. Their most general Lagrangian is shown to be uniquely composed of hyper-Kähler prepotentials, with the analytic space coordinates replaced by analytic hypermultiplet superfields defined on the same set of harmonic variables. Reviewer: A.Galperin Cited in 8 Documents MSC: 53C80 Applications of global differential geometry to the sciences 83E50 Supergravity 81T60 Supersymmetric field theories in quantum mechanics 53C55 Global differential geometry of Hermitian and Kählerian manifolds Keywords:harmonic analyticity; hyper-Kähler geometry; prepotentials; Ward ansatz; supersymmetric \(\sigma \) models Citations:Zbl 0643.53066 PDF BibTeX XML Cite \textit{A. Galperin} et al., Ann. Phys. 185, No. 1, 22--45 (1988; Zbl 0643.53067) Full Text: DOI References: [1] Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E., Ann. Phys. (N.Y.), 185, 1 (1988) [3] Penrose, R., Gen. Rel. Grav., 7, 31 (1976) [4] Penrose, R.; Ward, R. S., (Held, A., General Relativity and Gravitation, Vol. 2 (1980), Plenum: Plenum New York/London), 283 [5] Ko, M.; Ludvigsen, M.; Newman, E. T.; Tod, P. K., Phys. Rep., 71, 51 (1981) [6] Ward, R. S., (Proc. R. Soc. London Ser. A, 363 (1978)), 289 [7] Zupnik, B. M., Phys. Lett. B, 183, 175 (1987) [8] Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E., Comm. Math. Phys., 103, 515 (1986) [9] Eguchi, T.; Gilkey, P.; Hanson, A., Phys. Rep., 66, 213 (1980) [10] Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E., Class. Quantum Grav., 2, 601 (1985) [11] Zumino, B., Phys. Lett. B, 87, 203 (1979) [12] Alvarez-Gaumé, L.; Freedman, D. Z., Commun. Math. Phys., 80, 443 (1981) [13] Galperin, A.; Ivanov, E.; Kalitzin, S.; Ogievetsky, V.; Sokatchev, E., Class. Quantum Grav., 1, 469 (1984) [14] Sierra, C.; Townsend, P., Phys. Lett. B, 124, 497 (1983) [15] Sohnius, M. F., Nucl. Phys. B, 138, 109 (1978) [16] Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E., Class. Quantum Grav., 2, 617 (1985) [17] Bagger, J.; Witten, E., Nucl. Phys. B, 222, 1 (1983) [18] Galperin, A.; Ivanov, E.; Ogievetsky, V.; Sokatchev, E., Class. Quantum Grav., 4, 1255 (1987) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.