×

Extrapolation at stiff differential equations. (English) Zbl 0643.65034

Asymptotic expansions for the global error for extrapolation methods using the implicit Euler method, the linearly implicit Euler method and the linearly implicit midpoint rule for stiff initial value problems in ordinary differential equations are derived. Practical implications of these results for error estimation and step-size control are indicated. Numerical examples are given.
Reviewer: S.Filippi

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems

Software:

DEPAC

References:

[1] Auzinger, W., Frank, R., Macsek, F.: Asymptotic error expansions for stiff equations: the implicit Euler scheme. Report Nr. 72/87, Inst. f. Angew. u. Numer. Math., Technische Universität Wien · Zbl 0688.65056
[2] Bader, G., Deuflhard, P.: A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math.41, 373-398 (1983) · Zbl 0522.65050 · doi:10.1007/BF01418331
[3] Bulirsch, R., Stoer, J.: Numerical treatment of ordinary differential equations by extrapolation methods. Numer. Math.8, 1-13 (1966) · Zbl 0135.37901 · doi:10.1007/BF02165234
[4] Dahlquist, G., Lindberg, B.: On some implicit one-step methods for stiff differential equations. Technical Report TRITA-NA-7302, Stockholm, 1973
[5] Deuflhard, P.: Order and step-size control in extrapolation methods. Numer. Math.41, 399-422 (1983) · Zbl 0543.65049 · doi:10.1007/BF01418332
[6] Deuflhard, P.: Recent progress in extrapolation methods for ordinary differential equations. SIAM Review27, 505-535 (1985) · Zbl 0602.65047 · doi:10.1137/1027140
[7] Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential-algebraic systems. Numer. Math.51, 501-516 (1987) · Zbl 0635.65083 · doi:10.1007/BF01400352
[8] Gragg, W.B.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Numer. Anal.2, 384-404 (1965) · Zbl 0135.37803
[9] Hairer, E., Lubich, C.: Asymptotic expansions of fixed-stepsize methods. Numer. Math.45, 345-360 (1984) · Zbl 0571.65066 · doi:10.1007/BF01391413
[10] Hairer, E., Lubich, C.: On extrapolation methods for stiff and differential algebraic equations. In: Numerical Treatment of Differential Equations (K. Strehmel, ed.), Teubner-Texte zur Mathematik (to appear) · Zbl 0676.65078
[11] Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Heidelberg Berlin New York: Springer 1987 · Zbl 0638.65058
[12] Kreiss, H.O.: Problems with different time scales. In: Recent Advances in Numerical Analysis (C. de Boor, G.H. Golub, eds.), New York London: Academic Press 1978 · Zbl 0457.65056
[13] Miranker, W.L.: Numerical Methods for Stiff Equations. Dordrecht: Reidel 1981 · Zbl 0454.65051
[14] Shampine, L.F., Watts, H.A.: DEPAC-Design of a user oriented package of ODE solvers. Technical Report SAND-79-2374, 1980
[15] Stetter, H.J.: Towards a theory for discretizations of stiff differential systems. Lect. Notes Math.506: 190-201, 1976 · Zbl 0342.65045 · doi:10.1007/BFb0080125
[16] Veldhuizen, M. van:D-stability. SIAM J. Numer. Anal.18, 45-64 (1981) · Zbl 0473.65048 · doi:10.1137/0718005
[17] Verwer, J.G.: An analysis of Rosenbrock methods for nonlinear stiff initial value problems. SIAM J. Numer. Anal.19, 155-170 (1981) · Zbl 0478.65045 · doi:10.1137/0719008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.