×

zbMATH — the first resource for mathematics

Methods for solving reasoning problems in abstract argumentation – a survey. (English) Zbl 1328.68212
Summary: Within the last decade, abstract argumentation has emerged as a central field in artificial intelligence. Besides providing a core formalism for many advanced argumentation systems, abstract argumentation has also served to capture several non-monotonic logics and other AI related principles. Although the idea of abstract argumentation is appealingly simple, several reasoning problems in this formalism exhibit high computational complexity. This calls for advanced techniques when it comes to implementation issues, a challenge which has been recently faced from different angles. In this survey, we give an overview on different methods for solving reasoning problems in abstract argumentation and compare their particular features. Moreover, we highlight available state-of-the-art systems for abstract argumentation, which put these methods to practice.

MSC:
68T27 Logic in artificial intelligence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dung, P. M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artif. Intell., 77, 2, 321-358, (1995) · Zbl 1013.68556
[2] Bench-Capon, T. J.M.; Dunne, P. E., Argumentation in artificial intelligence, Artif. Intell., 171, 10-15, 619-641, (2007) · Zbl 1168.68560
[3] (Rahwan, I.; Simari, G. R., Argumentation in Artificial Intelligence, (2009), Springer)
[4] Besnard, P.; Hunter, A., Elements of argumentation, (2008), MIT Press
[5] Caminada, M.; Amgoud, L., On the evaluation of argumentation formalisms, Artif. Intell., 171, 5-6, 286-310, (2007) · Zbl 1168.68562
[6] Gorogiannis, N.; Hunter, A., Instantiating abstract argumentation with classical logic arguments: postulates and properties, Artif. Intell., 175, 9-10, 1479-1497, (2011) · Zbl 1225.68248
[7] Brewka, G., Nonmonotonic tools for argumentation, (Janhunen, T.; Niemelä, I., Proceedings of the 12th European Conference on Logics in Artificial Intelligence, JELIA 2010, Lecture Notes in Computer Science, vol. 6341, (2010), Springer), 1-6 · Zbl 1306.68185
[8] Baroni, P.; Giacomin, M., On principle-based evaluation of extension-based argumentation semantics, Artif. Intell., 171, 10-15, 675-700, (2007) · Zbl 1168.68559
[9] Baroni, P.; Giacomin, M., A systematic classification of argumentation frameworks where semantics agree, (Besnard, P.; Doutre, S.; Hunter, A., Proceedings of the 2nd Conference on Computational Models of Argument, COMMA 2008, Frontiers in Artificial Intelligence and Applications, vol. 172, (2008), IOS Press), 37-48
[10] P. Baroni, M. Giacomin, Semantics of abstract argument systems, in: Rahwan and Simari [3], pp. 25-44.
[11] Martínez, D. C.; García, A. J.; Simari, G. R., On acceptability in abstract argumentation frameworks with an extended defeat relation, (Dunne, P. E.; Bench-Capon, T. J.M., Proceedings of the 1st Conference on Computational Models of Argument, COMMA 2006, Frontiers in Artificial Intelligence and Applications, vol. 144, (2006), IOS Press), 273-278
[12] Dimopoulos, Y.; Torres, A., Graph theoretical structures in logic programs and default theories, Theor. Comput. Sci., 170, 1-2, 209-244, (1996) · Zbl 0874.68190
[13] Dunne, P. E.; Bench-Capon, T. J.M., Coherence in finite argument systems, Artif. Intell., 141, 1/2, 187-203, (2002) · Zbl 1043.68098
[14] Dvořák, W.; Woltran, S., Complexity of semi-stable and stage semantics in argumentation frameworks, Inf. Process. Lett., 110, 11, 425-430, (2010) · Zbl 1229.68041
[15] Dechter, R., Constraint processing, (2003), Morgan Kaufmann
[16] (Biere, A.; Heule, M.; van Maaren, H.; Walsh, T., Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185, (2009), IOS Press) · Zbl 1183.68568
[17] Brewka, G.; Eiter, T.; Truszczyński, M., Answer set programming at a glance, Commun. ACM, 54, 12, 92-103, (2011)
[18] Besnard, P.; Doutre, S., Checking the acceptability of a set of arguments, (Delgrande, J. P.; Schaub, T., Proceedings of the 10th International Workshop on Non-monotonic Reasoning, NMR 2004, (2004)), 59-64
[19] Arieli, O.; Caminada, M., A QBF-based formalization of abstract argumentation semantics, J. Appl. Log., 11, 2, 229-252, (2013) · Zbl 1284.68533
[20] Egly, U.; Woltran, S., Reasoning in argumentation frameworks using quantified Boolean formulas, (Dunne, P. E.; Bench-Capon, T. J.M., Proceedings of the 1st Conference on Computational Models of Argument, COMMA 2006, Frontiers in Artificial Intelligence and Applications, vol. 144, (2006), IOS Press), 133-144
[21] Dvořák, W.; Järvisalo, M.; Wallner, J. P.; Woltran, S., Complexity-sensitive decision procedures for abstract argumentation, Artif. Intell., 206, 53-78, (2014) · Zbl 1334.68206
[22] Cerutti, F.; Giacomin, M.; Vallati, M., Argsemsat: solving argumentation problems using SAT, (Parsons, S.; Oren, N.; Reed, C.; Cerutti, F., Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 2014, Frontiers in Artificial Intelligence and Applications, vol. 266, (2014), IOS Press), 455-456
[23] Amgoud, L.; Devred, C., Argumentation frameworks as constraint satisfaction problems, (Benferhat, S.; Grant, J., Proceedings of the 5th International Conference on Scalable Uncertainty Management, SUM 2011, Lecture Notes in Computer Science, vol. 6929, (2011), Springer), 110-122
[24] Bistarelli, S.; Pirolandi, D.; Santini, F., Solving weighted argumentation frameworks with soft constraints, (Larrosa, J.; O’Sullivan, B., Proceedings of the 14th Annual ERCIM International Workshop on Constraint Solving and Constraint Logic Programming, CSCLP 2009, Revised Selected Papers, Lecture Notes in Computer Science, vol. 6384, (2009), Springer), 1-18 · Zbl 1322.68202
[25] Bistarelli, S.; Santini, F., A common computational framework for semiring-based argumentation systems, (Coelho, H.; Studer, R.; Wooldridge, M., Proceedings of the 19th European Conference on Artificial Intelligence, ECAI 2010, Frontiers in Artificial Intelligence and Applications, vol. 215, (2010), IOS Press), 131-136 · Zbl 1211.68395
[26] Bistarelli, S.; Santini, F., Conarg: a constraint-based computational framework for argumentation systems, (Khoshgoftaar, T. M.; Zhu, X. H., Proceedings of the 23rd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2011, (2011), IEEE Computer Society Press), 605-612
[27] Bistarelli, S.; Santini, F., Modeling and solving AFs with a constraint-based tool: conarg, (Modgil, S.; Oren, N.; Toni, F., Proceedings of the 1st International Workshop on Theory and Applications of Formal Argumentation, TAFA 2011, Lecture Notes in Computer Science, vol. 7132, (2012), Springer), 99-116
[28] Bistarelli, S.; Santini, F., Conarg: a tool to solve (weighted) abstract argumentation frameworks with (soft) constraints, CoRR
[29] Toni, F.; Sergot, M., Argumentation and answer set programming, (Balduccini, M.; Son, T. C., Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays in Honor of Michael Gelfond, Lecture Notes in Computer Science, vol. 6565, (2011), Springer), 164-180 · Zbl 1326.68279
[30] Egly, U.; Gaggl, S. A.; Woltran, S., Answer-set programming encodings for argumentation frameworks, Argument Comput., 1, 2, 147-177, (2010)
[31] Dvořák, W.; Gaggl, S. A.; Wallner, J. P.; Woltran, S., Making use of advances in answer-set programming for abstract argumentation systems, (Tompits, H.; Abreu, S.; Oetsch, J.; Pührer, J.; Seipel, D.; Umeda, M.; Wolf, A., Proceedings of the 19th International Conference on Applications of Declarative Programming and Knowledge Management, INAP 2011, Revised Selected Papers, Lecture Notes in Artificial Intelligence, vol. 7773, (2013), Springer), 114-133
[32] Gabbay, D. M., An equational approach to argumentation networks, Argument Comput., 3, 2-3, 87-142, (2012)
[33] Dvořák, W.; Szeider, S.; Woltran, S., Abstract argumentation via monadic second order logic, (Hüllermeier, E.; Link, S.; Fober, T.; Seeger, B., Proceedings of the 6th International Conference on Scalable Uncertainty Management, SUM 2012, Lecture Notes in Computer Science, vol. 7520, (2012), Springer), 85-98
[34] Doutre, S.; Mengin, J., Preferred extensions of argumentation frameworks: query answering and computation, (Goré, R.; Leitsch, A.; Nipkow, T., Proceedings of the 1st International Joint Conference on Automated Reasoning, IJCAR 2001, Lecture Notes in Computer Science, vol. 2083, (2001), Springer), 272-288 · Zbl 0990.68541
[35] S. Modgil, M. Caminada, Proof theories and algorithms for abstract argumentation frameworks, in: Rahwan and Simari [3], pp. 105-132.
[36] Nofal, S.; Atkinson, K.; Dunne, P. E., Algorithms for decision problems in argument systems under preferred semantics, Artif. Intell., 207, 23-51, (2014) · Zbl 1334.68210
[37] Nofal, S.; Atkinson, K.; Dunne, P. E., Algorithms for argumentation semantics: labeling attacks as a generalization of labeling arguments, J. Artif. Intell. Res., 49, 635-668, (2014) · Zbl 1361.68240
[38] Verheij, B., A labeling approach to the computation of credulous acceptance in argumentation, (Veloso, M. M., Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, (2007)), 623-628
[39] Thang, P. M.; Dung, P. M.; Hung, N. D., Towards a common framework for dialectical proof procedures in abstract argumentation, J. Log. Comput., 19, 6, 1071-1109, (2009) · Zbl 1185.68677
[40] Dvořák, W.; Pichler, R.; Woltran, S., Towards fixed-parameter tractable algorithms for abstract argumentation, Artif. Intell., 186, 1-37, (2012) · Zbl 1251.68226
[41] Dunne, P. E., Computational properties of argument systems satisfying graph-theoretic constraints, Artif. Intell., 171, 10-15, 701-729, (2007) · Zbl 1168.68565
[42] Charwat, G., Tree-decomposition based algorithms for abstract argumentation frameworks, (2012), Vienna University of Technology, Master’s thesis
[43] Bistarelli, S.; Rossi, F.; Santini, F., Benchmarking hard problems in random abstract AFs: the stable semantics, (Parsons, S.; Oren, N.; Reed, C.; Cerutti, F., Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 2014, Frontiers in Artificial Intelligence and Applications, vol. 266, (2014), IOS Press), 153-160
[44] Bistarelli, S.; Rossi, F.; Santini, F., A first comparison of abstract argumentation reasoning-tools, (Schaub, T.; Friedrich, G.; O’Sullivan, B., Proceedings of the 21st European Conference on Artificial Intelligence, ECAI 2014, Frontiers in Artificial Intelligence and Applications, vol. 263, (2014), IOS Press), 969-970
[45] Cerutti, F.; Giacomin, M.; Vallati, M., Algorithm selection for preferred extensions enumeration, (Parsons, S.; Oren, N.; Reed, C.; Cerutti, F., Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 2014, Frontiers in Artificial Intelligence and Applications, vol. 266, (2014), IOS Press), 221-232
[46] Järvisalo, M.; Berre, D. L.; Roussel, O.; Simon, L., The international SAT solver competitions, AI Mag., 33, 1, 89-94, (2012)
[47] Alviano, M.; Calimeri, F.; Charwat, G.; Dao-Tran, M.; Dodaro, C.; Ianni, G.; Krennwallner, T.; Kronegger, M.; Oetsch, J.; Pfandler, A.; Pührer, J.; Redl, C.; Ricca, F.; Schneider, P.; Schwengerer, M.; Spendier, L. K.; Wallner, J. P.; Xiao, G., The fourth answer set programming competition: preliminary report, (Cabalar, P.; Son, T. C., Proceedings of the 12th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2013, Lecture Notes in Artificial Intelligence, vol. 8148, (2013), Springer), 42-53 · Zbl 06214645
[48] Cerutti, F.; Oren, N.; Strass, H.; Thimm, M.; Vallati, M., A benchmark framework for a computational argumentation competition, (Parsons, S.; Oren, N.; Reed, C.; Cerutti, F., Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 20, Frontiers in Artificial Intelligence and Applications, vol. 266, (2014), IOS Press), 459-460
[49] Baroni, P.; Caminada, M.; Giacomin, M., An introduction to argumentation semantics, Knowl. Eng. Rev., 26, 4, 365-410, (2011)
[50] Prakken, H., An abstract framework for argumentation with structured arguments, Argument Comput., 1, 2, 93-124, (2010)
[51] Gordon, T. F.; Prakken, H.; Walton, D., The carneades model of argument and burden of proof, Artif. Intell., 171, 10-15, 875-896, (2007) · Zbl 1168.68566
[52] P.M. Dung, R.A. Kowalski, F. Toni, Assumption-based argumentation, in: Rahwan and Simari [3], pp. 25-44. · Zbl 1131.68103
[53] García, A. J.; Simari, G. R., Defeasible logic programming: an argumentative approach, Theory Pract. Log. Program., 4, 1-2, 95-138, (2004) · Zbl 1090.68015
[54] Simari, G. R., A brief overview of research in argumentation systems, (Benferhat, S.; Grant, J., Proceedings of the 5th International Conference on Scalable Uncertainty Management, SUM 2011, Lecture Notes in Computer Science, vol. 6929, (2011), Springer), 81-95
[55] Brewka, G.; Polberg, S.; Woltran, S., Generalizations of dung frameworks and their role in formal argumentation, IEEE Intell. Syst., 29, 1, 30-38, (2014)
[56] Bench-Capon, T. J.M., Persuasion in practical argument using value-based argumentation frameworks, J. Log. Comput., 13, 3, 429-448, (2003) · Zbl 1043.03026
[57] C. Cayrol, M.-C. Lagasquie-Schiex, Bipolar abstract argumentation systems, in: Rahwan and Simari [3], pp. 65-84. · Zbl 1191.68480
[58] Modgil, S., Reasoning about preferences in argumentation frameworks, Artif. Intell., 173, 9-10, 901-934, (2009) · Zbl 1192.68663
[59] Amgoud, L.; Devred, C.; Lagasquie-Schiex, M.-C., A constrained argumentation system for practical reasoning, (Rahwan, I.; Moraitis, P., Proceedings of the 5th International Workshop on Argumentation in Multi-Agent Systems, ArgMAS 2008, Revised Selected and Invited Papers, Lecture Notes in Computer Science, vol. 5384, (2009), Springer), 37-56
[60] Budán, M. C.; Lucero, M. J.; Chesñevar, C. I.; Simari, G. R., Modelling time and reliability in structured argumentation frameworks, (Brewka, G.; Eiter, T.; McIlraith, S. A., Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning, KR 2012, (2012), AAAI Press), 578-582
[61] Kido, H.; Nitta, K., Practical argumentation semantics for socially efficient defeasible consequence, (Sonenberg, L.; Stone, P.; Tumer, K.; Yolum, P., Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, (2011), IFAAMAS), 267-274
[62] Gabbay, D. M., Fibring argumentation frames, Stud. Log., 93, 2-3, 231-295, (2009) · Zbl 1185.68670
[63] Baroni, P.; Cerutti, F.; Giacomin, M.; Guida, G., AFRA: argumentation framework with recursive attacks, Int. J. Approx. Reason., 52, 1, 19-37, (2011) · Zbl 1211.68433
[64] Brewka, G.; Eiter, T., Argumentation context systems: a framework for abstract group argumentation, (Erdem, E.; Lin, F.; Schaub, T., Proceedings of the 10th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2009, Lecture Notes in Computer Science, vol. 5753, (2009), Springer), 44-57 · Zbl 1258.68154
[65] Brewka, G.; Woltran, S., Abstract dialectical frameworks, (Lin, F.; Sattler, U.; Truszczyński, M., Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning, KR 2010, (2010), AAAI Press), 780-785
[66] Hunter, A., Some foundations for probabilistic abstract argumentation, (Verheij, B.; Szeider, S.; Woltran, S., Proceedings of the 4th Conference on Computational Models of Argument, COMMA 2012, Frontiers in Artificial Intelligence and Applications, vol. 245, (2012), IOS Press), 117-128
[67] Dunne, P. E.; Hunter, A.; McBurney, P.; Parsons, S.; Wooldridge, M., Weighted argument systems: basic definitions, algorithms, and complexity results, Artif. Intell., 175, 2, 457-486, (2011) · Zbl 1216.68261
[68] Coste-Marquis, S.; Devred, C.; Marquis, P., Symmetric argumentation frameworks, (Godo, L., Proceedings of the 8th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2005, Lecture Notes in Computer Science, vol. 3571, (2005), Springer), 317-328 · Zbl 1122.68642
[69] Caminada, M.; Gabbay, D. M., A logical account of formal argumentation, Stud. Log., 93, 2, 109-145, (2009) · Zbl 1188.03011
[70] P.E. Dunne, M. Wooldridge, Complexity of abstract argumentation, in: Simari and Rahwan [3], pp. 85-104.
[71] Dunne, P. E.; Caminada, M., Computational complexity of semi-stable semantics in abstract argumentation frameworks, (Hölldobler, S.; Lutz, C.; Wansing, H., Proceedings of the 11th European Conference on Logics in Artificial Intelligence, JELIA 2008, Lecture Notes in Computer Science, vol. 5293, (2008), Springer), 153-165 · Zbl 1178.68557
[72] Dvořák, W.; Woltran, S., On the intertranslatability of argumentation semantics, J. Artif. Intell. Res., 41, 445-475, (2011) · Zbl 1234.68369
[73] Gaggl, S. A.; Woltran, S., The cf2 argumentation semantics revisited, J. Log. Comput., 23, 5, 925-949, (2013) · Zbl 1275.68138
[74] Nieves, J. C.; Osorio, M.; Cortés, U., Preferred extensions as stable models, Theory Pract. Log. Program., 8, 4, 527-543, (2008) · Zbl 1148.68012
[75] Osorio, M.; Zepeda, C.; Nieves, J. C.; Cortés, U., Inferring acceptable arguments with answer set programming, (Proceedings of the 6th Mexican International Conference on Computer Science, ENC 2005, (2005), IEEE Computer Society), 198-205
[76] Wakaki, T.; Nitta, K., Computing argumentation semantics in answer set programming, (New Frontiers in Artificial Intelligence, JSAI 2008 Conference and Workshops, Revised Selected Papers, Lecture Notes in Computer Science, vol. 5447, (2008)), 254-269
[77] Gabbay, D. M., The equational approach to cf2 semantics, (Verheij, B.; Szeider, S.; Woltran, S., Proceedings of the 4th Conference on Computational Models of Argument, COMMA 2012, Frontiers in Artificial Intelligence and Applications, vol. 245, (2012), IOS Press), 141-152
[78] Eén, N.; Sörensson, N., An extensible SAT-solver, (Giunchiglia, E.; Tacchella, A., Proceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing, SAT 2003, Lecture Notes in Computer Science, vol. 2919, (2004), Springer), 502-518 · Zbl 1204.68191
[79] Marques-Silva, J. P.; Sakallah, K. A., GRASP: a search algorithm for propositional satisfiability, IEEE Trans. Comput., 48, 5, 506-521, (1999) · Zbl 1392.68388
[80] Gabbay, D. M., Dung’s argumentation is essentially equivalent to classical propositional logic with the peirce-quine dagger, Log. Univers., 5, 255-318, (2011) · Zbl 1280.03007
[81] Brewka, G.; Dunne, P. E.; Woltran, S., Relating the semantics of abstract dialectical frameworks and standard afs, (Walsh, T., Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, (2011), IJCAI/AAAI), 780-785
[82] Cerutti, F.; Dunne, P. E.; Giacomin, M.; Vallati, M., Computing preferred extensions in abstract argumentation: a SAT-based approach, (Black, E.; Modgil, S.; Oren, N., Proceedings of the Second International Workshop on Theory and Applications of Formal Argumentation, Revised Selected Papers, TAFA 2013, Lecture Notes in Computer Science, vol. 8306, (2014), Springer), 176-193 · Zbl 1405.68344
[83] Dvořák, W.; Järvisalo, M.; Wallner, J. P.; Woltran, S., Complexity-sensitive decision procedures for abstract argumentation, (Brewka, G.; Eiter, T.; McIlraith, S. A., Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning, KR 2012, (2012), AAAI Press), 54-64
[84] Rossi, F.; Beek, P.v.; Walsh, T., Handbook of constraint programming (foundations of artificial intelligence), (2006), Elsevier Science Inc.
[85] Walsh, T., Sat v csp, (Dechter, R., Proceedings of the 6th International Conference on Principles and Practice of Constraint Programming, CP 2000, Lecture Notes in Computer Science, vol. 1894, (2000), Springer), 441-456 · Zbl 1044.68808
[86] Marek, V. W.; Truszczyński, M., Stable models and an alternative logic programming paradigm, (The Logic Programming Paradigm - A 25-Year Perspective, (1999), Springer), 375-398 · Zbl 0979.68524
[87] Niemelä, I., Logic programming with stable model semantics as a constraint programming paradigm, Ann. Math. Artif. Intell., 25, 3-4, 241-273, (1999) · Zbl 0940.68018
[88] Baral, C., Knowledge representation, reasoning and declarative problem solving, (2002), Cambridge University Press · Zbl 1056.68139
[89] Gelfond, M., Representing knowledge in A-prolog, (Computational Logic: From Logic Programming into the Future, Lecture Notes in Computer Science, vol. 2408, (2002), Springer), 413-451 · Zbl 1012.68545
[90] Gebser, M.; Kaufmann, B.; Kaminski, R.; Ostrowski, M.; Schaub, T.; Schneider, M. T., Potassco: the Potsdam answer set solving collection, AI Commun., 24, 2, 107-124, (2011) · Zbl 1215.68214
[91] Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.; Scarcello, F., The DLV system for knowledge representation and reasoning, ACM Trans. Comput. Log., 7, 3, 499-562, (2006) · Zbl 1367.68308
[92] Eiter, T.; Gottlob, G., On the computational cost of disjunctive logic programming: propositional case, Ann. Math. Artif. Intell., 15, 3-4, 289-323, (1995) · Zbl 0858.68016
[93] Gebser, M.; Kaminski, R.; Schaub, T., Complex optimization in answer set programming, Theory Pract. Log. Program., 11, 4-5, 821-839, (2011) · Zbl 1222.68059
[94] Gelfond, M.; Lifschitz, V., Classical negation in logic programs and disjunctive databases, New Gener. Comput., 9, 3/4, 365-386, (1991) · Zbl 0735.68012
[95] Eiter, T.; Gottlob, G.; Mannila, H., Disjunctive Datalog, ACM Trans. Database Syst., 22, 3, 364-418, (1997)
[96] Liffiton, M. H.; Sakallah, K. A., Algorithms for computing minimal unsatisfiable subsets of constraints, J. Autom. Reason., 40, 1, 1-33, (2008) · Zbl 1154.68510
[97] Kilby, P.; Slaney, J. K.; Thiébaux, S.; Walsh, T., Backbones and backdoors in satisfiability, (Veloso, M. M.; Kambhampati, S., Proceedings of the 20th National Conference on Artificial Intelligence, AAAI 2005, (2005), AAAI Press/The MIT Press), 1368-1373
[98] Wallner, J. P.; Weissenbacher, G.; Woltran, S., Advanced SAT techniques for abstract argumentation, (Leite, J.; Son, T. C.; Torroni, P.; van der Torre, L.; Woltran, S., Proceedings of the 14th International Workshop on Computational Logic in Multi-Agent Systems, CLIMA 2013, Lecture Notes in Artificial Intelligence, vol. 8143, (2013), Springer), 138-154 · Zbl 1401.68312
[99] Osorio, M.; Dıaz, J.; Santoyo, A., Computing semi-stable semantics of af by 0-1 integer programming, (Proceedings of the 9th Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning, LANMR 2014, (2014))
[100] Osorio, M.; Díaz, J.; Santoyo, A., Computing preferred semantics: comparing two ASP approaches vs an approach based on 0-1 integer programming, (Gelbukh, A. F.; Espinoza, F. C.; Galicia-Haro, S. N., Human-Inspired Computing and Its Applications - 13th Mexican International Conference on Artificial Intelligence, MICAI 2014, Lecture Notes in Computer Science, vol. 8856, (2014), Springer), 419-430
[101] Dunne, P. E., The computational complexity of ideal semantics, Artif. Intell., 173, 18, 1559-1591, (2009) · Zbl 1185.68666
[102] Bliem, B., Decompose, guess & check - declarative problem solving on tree decompositions, (2012), Vienna University of Technology, Master’s thesis
[103] Langer, A.; Reidl, F.; Rossmanith, P.; Sikdar, S., Evaluation of an MSO-solver, (Bader, D. A.; Mutzel, P., Proceedings of the 2012 Meeting on Algorithm Engineering & Experiments, ALENEX 2012, (2012), SIAM/Omnipress), 55-63
[104] Caminada, M., An algorithm for computing semi-stable semantics, (Mellouli, K., Proceedings of the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU 2007, Lecture Notes in Computer Science, vol. 4724, (2007), Springer), 222-234 · Zbl 1148.68502
[105] Nofal, S., Algorithms for argument systems, (2013), University of Liverpool, Ph.D. thesis
[106] Caminada, M., An algorithm for stage semantics, (Baroni, P.; Cerutti, F.; Giacomin, M.; Simari, G. R., Proceedings of the 3rd International Conference on Computational Models of Argument, COMMA 2010, Frontiers in Artificial Intelligence and Applications, vol. 216, (2010), IOS Press), 147-158
[107] Podlaszewski, M.; Caminada, M.; Pigozzi, G., An implementation of basic argumentation components, (Sonenberg, L.; Stone, P.; Tumer, K.; Yolum, P., Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, (2011), IFAAMAS), 1307-1308
[108] Caminada, M.; Dvořák, W.; Vesic, S., Preferred semantics as socratic discussion, J. Log. Comput., (2014), in press · Zbl 1354.68250
[109] South, M.; Vreeswijk, G.; Fox, J., Dungine: a Java dung reasoner, (Besnard, P.; Doutre, S.; Hunter, A., Proceedings of the 2nd Conference on Computational Models of Argument, COMMA 2008, Frontiers in Artificial Intelligence and Applications, vol. 172, (2008), IOS Press), 360-368
[110] Vreeswijk, G., An algorithm to compute minimally grounded and admissible defence sets in argument systems, (Dunne, P. E.; Bench-Capon, T. J.M., Proceedings of the 1st Conference on Computational Models of Argument, COMMA 2006, Frontiers in Artificial Intelligence and Applications, vol. 144, (2006)), 109-120
[111] Niedermeier, R., Invitation to fixed-parameter algorithms, (2006), Oxford University Press · Zbl 1095.68038
[112] Dvořák, W.; Pichler, R.; Woltran, S., Towards fixed-parameter tractable algorithms for argumentation, (Lin, F.; Sattler, U.; Truszczyński, M., Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning, KR 2010, (2010), AAAI Press), 112-122
[113] Dvořák, W.; Szeider, S.; Woltran, S., Reasoning in argumentation frameworks of bounded clique-width, (Baroni, P.; Cerutti, F.; Giacomin, M.; Simari, G. R., Proceedings of the 3rd Conference on Computational Models of Argument, COMMA 2010, Frontiers in Artificial Intelligence and Applications, (2010), IOS Press), 219-230
[114] Dvořák, W.; Ordyniak, S.; Szeider, S., Augmenting tractable fragments of abstract argumentation, Artif. Intell., 186, 157-173, (2012) · Zbl 1251.68225
[115] Dvořák, W.; Morak, M.; Nopp, C.; Woltran, S., Dynpartix - a dynamic programming reasoner for abstract argumentation, (Tompits, H.; Abreu, S.; Oetsch, J.; Pührer, J.; Seipel, D.; Umeda, M.; Wolf, A., Proceedings of the 19th International Conference on Applications of Declarative Programming and Knowledge Management, INAP 2011, Revised Selected Papers, Lecture Notes in Artificial Intelligence, vol. 7773, (2013), Springer), 259-268
[116] Bliem, B.; Morak, M.; Woltran, S., D-FLAT: declarative problem solving using tree decompositions and answer-set programming, Theory Pract. Log. Program., 12, 4-5, 445-464, (2012) · Zbl 1260.68057
[117] Robertson, N.; Seymour, P. D., Graph minors. III. planar tree-width, J. Comb. Theory, Ser. B, 36, 1, 49-64, (1984) · Zbl 0548.05025
[118] Kloks, T., Treewidth: computations and approximations, Lecture Notes in Computer Science, vol. 842, (1994), Springer · Zbl 0825.68144
[119] Arnborg, S.; Corneil, D. G.; Proskurowski, A., Complexity of finding embeddings in a k-tree, SIAM J. Algebr. Discrete Methods, 8, 277-284, (1987) · Zbl 0611.05022
[120] Bodlaender, H. L., A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput., 25, 6, 1305-1317, (1996) · Zbl 0864.68074
[121] Bodlaender, H. L.; Koster, A. M., Treewidth computations I. upper bounds, Inf. Comput., 208, 3, 259-275, (2010) · Zbl 1186.68328
[122] Dermaku, A.; Ganzow, T.; Gottlob, G.; McMahan, B.; Musliu, N.; Samer, M., Heuristic methods for hypertree decomposition, (Gelbukh, A.; Morales, E. F., Proceedings of the 7th Mexican International Conference on Artificial Intelligence (MICAI 2008): Advances in Artificial Intelligence, Lecture Notes in Computer Science, vol. 5317, (2008), Springer), 1-11
[123] Cerutti, F.; Giacomin, M.; Vallati, M., Generating challenging benchmark afs, (Parsons, S.; Oren, N.; Reed, C.; Cerutti, F., Proceedings of the 5th International Conference on Computational Models of Argument, COMMA 2014, Frontiers in Artificial Intelligence and Applications, vol. 266, (2014), IOS Press), 457-458
[124] Dung, P. M.; Mancarella, P.; Toni, F., Computing ideal sceptical argumentation, Artif. Intell., 171, 10-15, 642-674, (2007) · Zbl 1168.68564
[125] Caminada, M., Comparing two unique extension semantics for formal argumentation: ideal and eager, (Proceedings of the 19th Belgian-Dutch Conference on Artificial Intelligence, BNAIC 2007, (2007)), 81-87
[126] Baroni, P.; Giacomin, M.; Guida, G., SCC-recursiveness: a general schema for argumentation semantics, Artif. Intell., 168, 1-2, 162-210, (2005) · Zbl 1132.68765
[127] Dvořák, W.; Gaggl, S. A., Stage semantics and the SCC-recursive schema for argumentation semantics, J. Log. Comput., (2014), in press · Zbl 1354.68252
[128] Baroni, P.; Dunne, P. E.; Giacomin, M., On the resolution-based family of abstract argumentation semantics and its grounded instance, Artif. Intell., 175, 3-4, 791-813, (2011) · Zbl 1216.68255
[129] Cerutti, F.; Giacomin, M.; Vallati, M.; Zanella, M., An SCC recursive meta-algorithm for computing preferred labellings in abstract argumentation, (Baral, C.; Giacomo, G. D.; Eiter, T., Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning, KR 2014, (2014), AAAI Press), 42-51
[130] Bistarelli, S.; Rossi, F.; Santini, F., A first comparison of abstract argumentation systems: a computational perspective, (Cantone, D.; Asmundo, M. N., Proceedings of the 28th Italian Conference on Computational Logic, CILC 2013, CEUR Workshop Proceedings, CEUR-WS.org, vol. 1068, (2013)), 241-245
[131] Bistarelli, S.; Rossi, F.; Santini, F., Enumerating extensions on random abstract-AFs with argtools, aspartix, conarg2, and dung-O-matic, (Bulling, N.; van der Torre, L. W.N.; Villata, S.; Jamroga, W.; Vasconcelos, W., Proceedings of the 15th International Workshop on Computational Logic in Multi-Agent Systems, CLIMA XV, Lecture Notes in Computer Science, vol. 8624, (2014), Springer), 70-86 · Zbl 1425.68403
[132] Modgil, S.; Toni, F.; Bex, F.; Bratko, I.; Chesñevar, C. I.; Dvořák, W.; Falappa, M. A.; Fan, X.; Gaggl, S. A.; García, A. J., The added value of argumentation, (Agreement Technologies, (2013), Springer), 357-403
[133] Gaggl, S. A.; Woltran, S., Cf2 semantics revisited, (Baroni, P.; Cerutti, F.; Giacomin, M.; Simari, G. R., Proceedings of the 3rd Conference on Computational Models of Argument, COMMA 2010, Frontiers in Artificial Intelligence and Applications, vol. 216, (2010), IOS Press), 243-254
[134] Dvořák, W.; Dunne, P. E.; Woltran, S., Parametric properties of ideal semantics, (Walsh, T., Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, (2011), IJCAI/AAAI), 851-856
[135] Caminada, M., A labelling approach for ideal and stage semantics, Argument Comput., 2, 1-21, (2011)
[136] Baumann, R., Splitting an argumentation framework, (Delgrande, J. P.; Faber, W., Proceedings of the 11th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR 2011, Lecture Notes in Computer Science, vol. 6645, (2011), Springer), 40-53 · Zbl 1327.68240
[137] Baumann, R.; Brewka, G.; Wong, R., Splitting argumentation frameworks: an empirical evaluation, (Modgil, S.; Oren, N.; Toni, F., Proceedings of the 1st International Workshop on Theory and Applications of Formal Argumentation, TAFA 2011, Revised Selected Papers, Lecture Notes in Computer Science, vol. 7132, (2012), Springer), 17-31
[138] Baumann, R.; Brewka, G.; Dvořák, W.; Woltran, S., Parameterized splitting: a simple modification-based approach, (Erdem, E.; Lee, J.; Lierler, Y.; Pearce, D., Correct Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz, Lecture Notes in Computer Science, vol. 7265, (2012), Springer), 57-71 · Zbl 1357.68026
[139] Liao, B.; Huang, H., Partial semantics of argumentation: basic properties and empirical results, J. Log. Comput., 23, 3, 541-562, (2012) · Zbl 1267.68225
[140] Oikarinen, E.; Woltran, S., Characterizing strong equivalence for argumentation frameworks, Artif. Intell., 175, 14-15, 1985-2009, (2011) · Zbl 1252.68279
[141] Baumann, R., Normal and strong expansion equivalence for argumentation frameworks, Artif. Intell., 193, 18-44, (2012) · Zbl 1270.68280
[142] Baroni, P.; Boella, G.; Cerutti, F.; Giacomin, M.; van der Torre, L.; Villata, S., On the input/output behavior of argumentation frameworks, Artif. Intell., 217, 144-197, (2014) · Zbl 1408.68134
[143] Amgoud, L.; Bodenstaff, L.; Caminada, M.; McBurney, P.; Parsons, S.; Prakken, H.; van Veenen, J.; Vreeswijk, G., Final review and report on formal argumentation system, (2006), Deliverable D2. 6, Tech. rep., ASPIC IST-FP6-002307
[144] Snaith, M.; Reed, C., TOAST: online ASPIC^+ implementation, (Verheij, B.; Szeider, S.; Woltran, S., Proceedings of the 4th Conference on Computational Models of Argument, COMMA 2012, Frontiers in Artificial Intelligence and Applications, vol. 245, (2012), IOS Press), 509-510
[145] Gordon, T. F., The carneades web service, (Verheij, B.; Szeider, S.; Woltran, S., Proceedings of the 4th Conference on Computational Models of Argument, COMMA 2012, Frontiers in Artificial Intelligence and Applications, vol. 245, (2012), IOS Press), 517-518
[146] Efstathiou, V.; Hunter, A., Algorithms for generating arguments and counterarguments in propositional logic, Int. J. Approx. Reason., 52, 6, 672-704, (2011) · Zbl 1252.68273
[147] Charwat, G.; Wallner, J. P.; Woltran, S., Utilizing ASP for generating and visualizing argumentation frameworks, (Fink, M.; Lierler, Y., Proceedings of the 5th International Workshop on Answer Set Programming and Other Computing Paradigms, ASPOCP 2012, (2012)), 51-65
[148] Besnard, P.; Hunter, A., A logic-based theory of deductive arguments, Artif. Intell., 128, 1-2, 203-235, (2001) · Zbl 0971.68143
[149] van Gijzel, B.; Nilsson, H., Towards a framework for the implementation and verification of translations between argumentation models, (Plasmeijer, R., Proceedings of the 25th symposium on Implementation and Application of Functional Languages, IFL 2013, (2013), ACM), 93-103
[150] Alsinet, T.; Béjar, R.; Godo, L.; Guitart, F., Using answer set programming for an scalable implementation of defeasible argumentation, (Proceedings of the IEEE 24th International Conference on Tools with Artificial Intelligence, ICTAI 2012, (2012), IEEE), 1016-1021
[151] Schneider, J.; Groza, T.; Passant, A., A review of argumentation for the social semantic web, Semant. Web, 4, 2, 159-218, (2013)
[152] Dvořák, W.; Gaggl, S. A.; Szeider, S.; Woltran, S., Benchmark libraries for argumentation, (Ossowski, S., Agreement Technologies, LGTS, vol. 8, (2012), Springer), 389-393, Ch. The Added Value of Argumentation
[153] Baumann, R.; Brewka, G., Expanding argumentation frameworks: enforcing and monotonicity results, (Baroni, P.; Cerutti, F.; Giacomin, M.; Simari, G. R., Proceedings of the 3rd Conference on Computational Models of Argument, COMMA 2010, Frontiers in Artificial Intelligence and Applications, vol. 216, (2010), IOS Press), 75-86
[154] Cayrol, C.; de Saint-Cyr, F. D.; Lagasquie-Schiex, M.-C., Change in abstract argumentation frameworks: adding an argument, J. Artif. Intell. Res., 38, 49-84, (2010) · Zbl 1191.68480
[155] Falappa, M. A.; García, A. J.; Kern-Isberner, G.; Simari, G. R., On the evolving relation between belief revision and argumentation, Knowl. Eng. Rev., 26, 1, 35-43, (2011)
[156] Liao, B.; Jin, L.; Koons, R. C., Dynamics of argumentation systems: a division-based method, Artif. Intell., 175, 11, 1790-1814, (2011) · Zbl 1226.68101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.