# zbMATH — the first resource for mathematics

On the three-dimensional Vahlen theorem. (English. Russian original) Zbl 1369.11048
Math. Notes 95, No. 1, 136-138 (2014); translation from Mat. Zametki 95, No. 1, 154-156 (2014).
From the text: Let $$\gamma^{(1)}, \ldots, \gamma^{(s)}$$ be the basis nodes of a full-rank lattice
$\Gamma = \left\{ m_1 \gamma^{(1)} + \cdots + m_s \gamma^{(s)}: m_1,\ldots, m_s \in \mathbb Z \right\} \subset \mathbb R^s.$
Vahlen’s theorem concerning the approximation of numbers by convergents has the following interpretation in terms of lattices: for every Voronoi basis $$\{\gamma^{(1)}, \gamma^{(2)}\}$$,
$\min\left\{\left|\gamma_1^{(1)}, \gamma_2^{(1)}\right|, \left|\gamma_1^{(2)}, \gamma_2^{(2)}\right|\right\} \leq \tfrac{1}{2} \det \Gamma.$

##### MSC:
 11H06 Lattices and convex bodies (number-theoretic aspects)
Full Text:
##### References:
 [1] A. V. Ustinov, in Mathematics and Informatics, 1, Sovr. Probl. Matem., To the 75th Birthday of Anatolii Alekseevich Karatsuba (MIAN, Moscow, 2012), Vol. 16, pp. 103–128 [Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S91–S116]. [2] G. F. Voronoi, Collected Works in Three Volumes, Vol. 1 (Izdatel’stvo Akademii Nauk Ukrainskoi SSR, Kiev, 1952) [in Russian]. [3] M. O. Avdeeva and V. A. Bykovskii, Mat. Zametki 79(2), 163 (2006) [Math. Notes 79 (1–2), 151–156 (2006)]. [4] K. Th. Vahlen, J. fürMath. 115(3), 221 (1895). [5] A. Ya. Khinchin, Continued Fractions (Nauka, Moscow, 1978; Dover Publications, Inc., Mineola, NY, 1997). [6] H. Minkowski, Ann. Sci. École Norm. Sup. (3) 13, 41 (1896). · JFM 27.0170.01 [7] H. Hancock, Development of the Minkowski Geometry of Numbers, Vol. 1,2 (Dover Publ., 1964). · Zbl 0123.25603 [8] O. A. Gorkusha, Mat. Zametki 69(3), 353 (2001) [Math. Notes 69 (3–4), 320 (2001)]. [9] V. A. Bykovskii and O. A. Gorkusha, Mat. Sb. 192(2), 57 (2001) [Sb. Math. 192 (1–2), 215–223 (2001)]. [10] M. O. Avdeeva and V. A. Bykovskii, Mat. Sb. 194(7), 3 (2003) [Sb. Math. 194 (7–8), 955 (2003)]. [11] V. A. Bykovskii, Mat. Zametki 66(1), 30 (1999) [Math. Notes 66 (1–2), 24 (1999) (2000)]. [12] S. V. Gassan, Chebyshevskii Sb. 6(3), 51 (2005) [in Russian].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.