Anantharaman, Nalini; Le Masson, Etienne Quantum ergodicity on large regular graphs. (English) Zbl 1386.58015 Duke Math. J. 164, No. 4, 723-765 (2015). Let \((G_n)\) be a sequence of \((q+1)\)-regular graphs, \(G_n=(V_n,E_n)\) with \(V_n=\{1,\dots,n\}\). Assume that \((G_n)\) is a family of expanders and that it converges to a tree in the sense of Benjamini and Schramm. Fix \(s_0\in(0,\tau)\), and let \(I_n=[s_0-\delta_n,s_0+\delta_n]\). Call \((s_1^{(n)},\dots,s_n^{(n)})\) the spectral parameters associated with the eigenvalues of \(M=\Delta+I\) with \(\Delta\) the discrete Laplacian, and \((\psi_1^{(n)},\dots,\psi_n^{(n)})\) a corresponding orthonormal eigenbasis.Let \(N(I_n,G_n)=|\{j\in\{1,\dots,n\}\;|\;s_j^{(n)}\in I_n\}|\) be the number of eigenvalues in \(I_n\). Denote by \(a_n:\;V_n\to \mathbb C\) a sequence of functions such that \[ \sum_{x\in V_n}a_n(x)=0,\qquad \sup_x|a_n(x)|\leq 1. \]The main theorem of this article asserts that \[ \lim_{n\to \infty} 1{N(I_n,G_n)}\sum_{s_j^{(n)}\in I_n}|\langle\psi_j^{(n)},a_n\psi_j^{(n)}\rangle|^2 =0. \] The authors also generalize it by replacing the function \(a\) with any finite range operator. Reviewer: Shin-ya Koyama (Yokohama) Cited in 2 ReviewsCited in 42 Documents MSC: 58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity 60B20 Random matrices (probabilistic aspects) 81Q50 Quantum chaos Keywords:large random graphs; Laplacian eigenfunctions; quantum ergodicity; semiclassical measures × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid HAL References: [1] N. Alon, Eigenvalues and expanders: Theory of computing (Singer Island, Fla., 1984) , Combinatorica 6 (1986), 83-96. · Zbl 0661.05053 · doi:10.1007/BF02579166 [2] I. Benjamini and O. Schramm, Recurrence of distributional limits of finite planar graphs , Electron. J. Probab. 6 (2001), no. 23. · Zbl 1010.82021 · doi:10.1214/EJP.v6-96 [3] G. Berkolaiko, J. P. Keating, and U. Smilansky, Quantum ergodicity for graphs related to interval maps , Comm. Math. Phys. 273 (2007), 137-159. · Zbl 1122.81037 · doi:10.1007/s00220-007-0244-0 [4] G. Berkolaiko, J. P. Keating, and B. Winn, No quantum ergodicity for star graphs , Comm. Math. Phys. 250 (2004), 259-285. · Zbl 1059.81066 · doi:10.1007/s00220-004-1145-0 [5] B. Bollobás, Random Graphs , Cambridge Stud. Adv. Math. 73 , Cambridge Univ. Press, Cambridge, 2001. [6] P. Bourgade and H.-T. Yau, The eigenvector moment flow and local quantum unique ergodicty , preprint, [math.PR]. arXiv:1312.1301 [7] S. Brooks and E. Lindenstrauss, Non-localization of eigenfunctions on large regular graphs , Israel J. Math. 193 (2013), 1-14. · Zbl 1317.05110 · doi:10.1007/s11856-012-0096-y [8] Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien , Comm. Math. Phys. 102 (1985), 497-502. · Zbl 0592.58050 · doi:10.1007/BF01209296 [9] M. Cowling and A. G. Setti, The range of the Helgason-Fourier transformation on homogeneous trees , Bull. Austral. Math. Soc. 59 (1999), 237-246. · Zbl 0929.43004 · doi:10.1017/S0004972700032858 [10] I. Dumitriu and S. Pal, Sparse regular random graphs: Spectral density and eigenvectors , Ann. Prob. 40 (2012), 2197-2235. · Zbl 1255.05173 · doi:10.1214/11-AOP673 [11] Y. Elon, Eigenvectors of the discrete Laplacian on regular graphs-a statistical approach , J. Phys. A 41 (2008), art. ID 435203. · Zbl 1157.39314 · doi:10.1088/1751-8113/41/43/435203 [12] Y. Elon and U. Smilansky, Percolating level sets of the adjacency eigenvectors of \(d\)-regular graphs , J. Phys. A 43 (2010), art. ID 455209. · Zbl 1202.82044 · doi:10.1088/1751-8113/43/45/455209 [13] L. Erdős and A. Knowles, Quantum diffusion and delocalization for band matrices with general distribution , Ann. Henri Poincaré 12 (2011), 1227-1319. · Zbl 1247.15033 · doi:10.1007/s00023-011-0104-5 [14] L. Erdős and A. Knowles, Quantum diffusion and eigenfunction delocalization in a random band matrix model , Comm. Math. Phys. 303 (2011), 509-554. · Zbl 1226.15024 · doi:10.1007/s00220-011-1204-2 [15] L. Erdős, B. Schlein, and H.-T. Yau, Local semicircle law and complete delocalization for Wigner random matrices , Comm. Math. Phys. 287 (2009), 641-655. · Zbl 1186.60005 · doi:10.1007/s00220-008-0636-9 [16] L. Erdős, B. Schlein, and H.-T. Yau, Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , Ann. Probab. 37 (2009), 815-852. · Zbl 1175.15028 · doi:10.1214/08-AOP421 [17] J. Friedman, A proof of Alon’s second eigenvalue conjecture and related problems , Mem. Amer. Math. Soc. 195 (2008), no. 910. · Zbl 1177.05070 · doi:10.1090/memo/0910 [18] L. Geisinger, Convergence of the density of states and delocalization of eigenvectors on random regular graphs , preprint, [math-ph]. arXiv:1305.1039 · Zbl 1384.60024 [19] S. Gnutzmann, J. P. Keating, and F. Piotet, Eigenfunction statistics on quantum graphs , Ann. Physics 325 (2010), 2595-2640. · Zbl 1206.81043 · doi:10.1016/j.aop.2010.07.001 [20] D. Jakobson, S. D. Miller, I. Rivin, and Z. Rudnick, “Eigenvalue spacings for regular graphs” in Emerging Applications of Number Theory (Minneapolis, 1996) , IMA Vol. Math. Appl. 109 , Springer, New York, 1999, 317-327. · Zbl 1071.81522 · doi:10.1007/978-1-4612-1544-8_12 [21] J. P. Keating, J. Marklof, and B. Winn, Value distribution of the eigenfunctions and spectral determinants of quantum star graphs , Comm. Math. Phys. 241 (2003), 421-452. · Zbl 1098.81034 · doi:10.1007/s00220-003-0941-2 [22] H. Kesten, Symmetric random walks on groups , Trans. Amer. Math. Soc. 92 (1959), 336-354. · Zbl 0092.33503 · doi:10.2307/1993160 [23] T. Kottos and U. Smilansky, Quantum chaos on graphs , Phys. Rev. Lett. 79 (1997), 4794-4797. [24] T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs , Ann. Physics 274 (1999), 76-124. · Zbl 1036.81014 · doi:10.1006/aphy.1999.5904 [25] J. D. Lafferty and D. N. Rockmore, “Level spacings for Cayley graphs” in Emerging Applications of Number Theory (Minneapolis, 1996) , IMA Vol. Math. Appl. 109 , Springer, New York, 1999, 373-386. · Zbl 0962.05026 · doi:10.1007/978-1-4612-1544-8_15 [26] E. Le Masson, Pseudo-differential calculus on homogeneous trees , Ann. Henri Poincaré 15 (2013), 1697-1732. · Zbl 1328.35344 · doi:10.1007/s00023-013-0284-2 [27] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs , Combinatorica 8 (1988), 261-277. · Zbl 0661.05035 · doi:10.1007/BF02126799 [28] A. Marcus, D. A. Spielman, and N. Srivastava, Interlacing families, I: Bipartite ramanujan graphs of all degrees , preprint, [math.CO]. arXiv:1304.4132 · Zbl 1316.05066 · doi:10.4007/annals.2015.182.1.7 [29] B. D. McKay, The expected eigenvalue distribution of a large regular graph , Linear Algebra Appl. 40 (1981), 203-216. · Zbl 0468.05039 · doi:10.1016/0024-3795(81)90150-6 [30] B. D. McKay, N. C. Wormald, and B. Wysocka, Short cycles in random regular graphs , Electron. J. Combin. 11 (2004), no. 66. · Zbl 1063.05122 [31] A. D. Mirlin and Y. V. Fyodorov, Universality of level correlation function of sparse random matrices , J. Phys. A 24 (1991), 2273-2286. · Zbl 0760.15017 · doi:10.1088/0305-4470/24/10/016 [32] M. S. Pinsker, “On the complexity of a concentrator” in 7th International Teletraffic Conference (Stockholm) , 1973, 318/1-318/4, . [33] U. Smilansky, Quantum chaos on discrete graphs , J. Phys. A 40 (2007), F621-F630. · Zbl 1124.81024 · doi:10.1088/1751-8113/40/27/F07 [34] U. Smilansky, Discrete graphs-a paradigm model for quantum chaos , Séminaire Poincaré XIV (2010), 1-26. [35] A. I. Shnirelman [Šnirel’man], Ergodic properties of eigenfunctions , Uspehi Mat. Nauk 29 (1974), 181-182. · Zbl 0285.16024 [36] A. Terras, Fourier Analysis on Finite Groups and Applications , London Math. Soc. Stud. Texts 43 , Cambridge Univ. Press, Cambridge, 1999. · Zbl 0928.43001 [37] L. V. Tran, V. H. Vu, and K. Wang, Sparse random graphs: Eigenvalues and eigenvectors , Random Structures Algorithms 42 (2013), 110-134. · Zbl 1257.05089 · doi:10.1002/rsa.20406 [38] S. Zelditch, Pseudodifferential analysis on hyperbolic surfaces , J. Funct. Anal. 68 (1986), 72-105. · Zbl 0612.58048 · doi:10.1016/0022-1236(86)90058-3 [39] S. Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces , Duke Math. J. 55 (1987), 919-941. · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3 [40] S. Zelditch, Quantum ergodicity of \(C^{*}\) dynamical systems , Comm. Math. Phys. 177 (1996), 507-528. · Zbl 0856.58019 · doi:10.1007/BF02101904 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.