×

zbMATH — the first resource for mathematics

Global optimization of protein-peptide docking by a filling function method. (English) Zbl 1321.90108
Summary: Molecular docking programs play a crucial role in drug design and development. In recent years, much attention has been devoted to the protein-peptide docking problem in which docking of a flexible peptide with a given protein is sought. In this work, we present a docking algorithm which is based on the use of a filling function method for continuous global optimization. In particular, the protein-peptide docking position is found by minimizing the conformational potential free energy function based on a new approximate mathematical model. The resulting global optimization problem presents some difficulties, since it is a large-scale one and the objective function is non-convex, so that it has many local minima. To solve the problem, we adopt a global optimization method based on the use of a filling function to escape from local solutions. Moreover, in order to obtain more accurate results, we search the correct docking position by performing a two-phase optimization process. In particular, in a first step, only the carbon \(\mathrm{C}_\alpha\) atoms of the protein and peptide are considered, thus obtaining an approximate docking solution. Then, the energy function is completed by considering all the peptide and protein atoms so that, starting from the solution of the first phase, the new minimization process gives a more accurate result. We present numerical results on a set of benchmark docking pairs and their comparison with those obtained by the known software package PacthDock for molecular docking.

MSC:
90C26 Nonconvex programming, global optimization
90C30 Nonlinear programming
90C90 Applications of mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berman, H; Westbrook, J; Feng, Z; Gilliland, G; Bhat, T; Weissig, H; Shindyalov, I; Bourne, P, The protein data bank, Nucleic Acids Res., 28, 235-242, (2000)
[2] Hartenfeller, M; Schneider, G, De novo drug design, Methods Mol. Biol., 672, 299-323, (2011)
[3] Dean, P; Lloyd, D; Todorov, N, De novo drug design: integration of structure-based and ligand-based methods, Curr. Opin. Drug Discov. Dev., 7, 347-353, (2004)
[4] Vaara, M, A unified conformational selection and induced fit approach to protein-peptide docking, PLoS ONE, 8, e58769, (2013)
[5] Fjell, C; Hiss, J; Hancock, R; Schneider, G, Designing antimicrobial peptides: form follows function, Nat. Rev. Drug Discov., 11, 37-51, (2012)
[6] Scior, T; Bender, A; Tresadern, G; Medina-Franco, J; Martínez-Mayorga, K; Langer, T; Cuanalo-Contreras, K; Agrafiotis, D, Recognizing pitfalls in virtual screening: a critical review, J. Chem. Inf. Model., 52, 867-881, (2012)
[7] Cheng, T; Li, Q; Zhou, Z; Wang, Y; Bryant, S, Structure-based virtual screening for drug discovery: a problem-centric review, AAPS J., 14, 133-141, (2012)
[8] Trellet, M; Melquiond, A; Bonvin, A, New approaches in peptide antibiotics, Curr. Opin. Pharmacol., 9, 571-576, (2009)
[9] Antes, I, A new molecular dynamics-based algorithm for proteinpeptide docking including receptor flexibility, Proteins, 78, 1084-1104, (2010)
[10] Duhovny, D., Nussinov, R., Wolfson, H.: Efficient unbound docking of rigid molecules. In: Gusfield et al. (ed.) Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI). Lecture Notes in Computer Science, 2452, pp. 185-200. Springer-Verlag, Rome (2002) · Zbl 1016.68557
[11] Schneidman-Duhovny, D; Inbar, Y; Nussinov, R; Wolfson, H, Patchdock and symmdock: servers for rigid and symmetric docking, Nucleic Acids Res., 33, 363-367, (2005)
[12] Ruvo, M; Giuliani, A; Paci, P; Santoni, D; Paola, LD, Shedding light on protein ligand binding by graph theory: the topological nature of allostery, Biophys. Chem., 165, 21-29, (2012)
[13] Paola, L; Ruvo, MD; Paci, P; Santoni, D; Giuliani, A, Protein contact networks: an emerging paradigm in chemistry, Chem. Rev., 113, 1598-1613, (2013)
[14] Ewing, T; Makino, S; Skillman, A; Kuntz, I, Search strategies for automated molecular docking of flexible molecule databases, J. Comput. Aided Mol. Des., 15, 411-428, (2001)
[15] Neduva, V; Linding, R; Su-Angrand, I; Stark, A; Masi, F; Gibson, T; Lewis, J; Serrano, L; Russell, R, Systematic discovery of new recognition peptides mediating protein interaction networks, PLoS Biol., 3, e405, (2005)
[16] Petsalaki, E; Russell, R, Peptide-mediated interactions in biological systems: new discoveries and applications, Curr. Opin. Biotechnol., 19, 344-350, (2008)
[17] Jones, G; Willett, P; Glen, R; Leach, A; Taylor, R, Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol., 267, 727-748, (1997)
[18] Morris, G; Goodsell, D; Halliday, R; Huey, R; Hart, W; Belew, R; Olson, A, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comput. Chem., 19, 1639-1662, (1998)
[19] Prasad, P; Gautham, N, A new peptide docking strategy using a Mean field technique with mutually orthogonal Latin square sampling, J. Comput. Aided Mol. Des., 22, 815-829, (2008)
[20] Taylor, RD; Jewsbury, PJ; Essex, JW, Flexible ligand and receptor docking with a continuum solvent model and soft-core energy function, J. Comput. Chem., 24, 1637-1656, (2003)
[21] Apostolakis, J; Plückthun, A; Caflisch, A, Docking small ligands in flexible binding sites, J. Comput. Chem., 19, 21-37, (1998)
[22] Case, D., Darden, T., III, T.C., Simmerling, C., Wang, J., Duke, R., Luo, R., Walker, R., Zhang, W., Merz, K., Roberts, B., Hayik, S., Roitberg, A., Seabra, G., Swails, J., Goetz, A., Kolossváry, I., Wong, K., Paesani, F., Vanicek, J., Wolf, R., Liu, J., Wu, X., Brozell, S., Steinbrecher, T., Gohlke, H., Cai, Q., Ye, X., Wang, J., Hsieh, M., Cui, G., Roe, D., Mathews, D., M.G. Seetin and, R.S.F., Sagui, C., Babin, V., Luchko, T., Gusarov, S., Kovalenko, A., Kollman, P.: Amber 12. Technical Report, University of California, San Francisco (2012)
[23] Lampariello, F.: A filling function method for continuos unconstrained global optimization: application to morse clusters. Technical Report R.615, IASI-CNR (2004) · Zbl 1163.90041
[24] Lampariello, F., Liuzzi, G.: A filling function method for unconstrained global optimization. Comput. Optim. Appl. (2013). (submitted) · Zbl 1326.90064
[25] Momany, F; McGuire, R; Burgess, A; Scheraga, H, Energy parameters in polypeptides. vii. geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids, J. Phys. Chem., 79, 2361-2381, (1975)
[26] Brooks, BR; Brooks, CL; Mackerell, AD; Nilsson, L; Petrella, RJ; Roux, B; Won, Y; Archontis, G; Bartels, C; Boresch, S; Caflisch, A; Caves, L; Cui, Q; Dinner, AR; Fischer, MF; Gao, J; Hodoscek, M; Im, W; Kuczera, K; Lazaridis, T; Ma, J; Ovchinnikov, V; Paci, E; Pastor, RW; Post, CB; Pu, JZ; Schaefer, M; Tidor, B; Venable, RM; Woodcock, HL; Wu, X; Yang, W; York, DM; Karplus, M, Charmm: the biomolecular simulation program, J. Comput. Chem., 30, 1545-1615, (2009)
[27] Bertolazzi, P; Guerra, C; Liuzzi, G, A global optimization algorithm for protein surface alignment, BMC Bioinform., 11, 488-498, (2010)
[28] London, N; Movshovitz-Attias, D; Schueler-Furman, O, The structural basis of peptide-protein binding strategies, Structure, 18, 188-189, (2010)
[29] Connolly, M, Analytical molecular surface calculation, J. Appl. Crystallogr., 16, 548-558, (1983)
[30] Törn, A., Z̆ilinskas, A.: Global Optimization. Springer-Verlag, Berlin (1989) · Zbl 0752.90075
[31] Pintér, J.D.: Global Optimization in Action. Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications. Series on Nonconvex Optimization and Its Applications. Kluwer Academic Publisher, Dordrecht (1996)
[32] Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Series on Nonconvex Optimization and Its Applications, 2nd edn. Kluwer Academic Publisher, Dordrecht (2000) · Zbl 0966.90073
[33] Dzemyda, G., S̆altenis, V., Z̆ilinskas, A. (eds.): Stochastic and Global Optimization. Series on Nonconvex Optimization and Its Applications. Kluwer Academic Publisher, Dordrecht (2002)
[34] Pardalos, P., Romeijn, H. (eds.): Handbook of Global Optimization, vol. 2. Series on Nonconvex Optimization and Its Applications. Kluwer Academic Publisher, Dordrecht (2002)
[35] Liuzzi, G; Lucidi, S; Piccialli, V, A direct-based approach exploiting local minimizations for the solution of large-scale global optimization problems, Comput. Optim. Appl., 45, 353-375, (2010) · Zbl 1187.90275
[36] Liuzzi, G; Lucidi, S; Piccialli, V, A partition-based global optimization algorithm, J. Glob. Optim., 48, 113-128, (2010) · Zbl 1230.90153
[37] Levy, A; Montalvo, A, The tunneling algorithm for the global minimization of functions, SIAM J. Sci. Stat. Comput., 6, 15-29, (1985) · Zbl 0601.65050
[38] Ge, R, A filled function method for finding a global minimizer of a function of several variables, Math. Program., 46, 191-204, (1990) · Zbl 0694.90083
[39] Lucidi, S; Piccialli, V, New classes of globally convexized filled functions for global optimization, J. Glob. Optim., 24, 219-236, (2002) · Zbl 1047.90051
[40] Liuzzi, G; Lucidi, S; Piccialli, V; Sotgiu, A, A magnetic resonance device designed via global optimization techniques, Math. Program., 101, 339-364, (2004) · Zbl 1058.92030
[41] Campana, E; Liuzzi, G; Lucidi, S; Peri, D; Piccialli, V; Pinto, A, New global optimization methods for ship design problems, Optim. Eng., 10, 533-555, (2009) · Zbl 1273.74383
[42] Jones, D; Perttunen, C; Stuckman, B, Lipschitzian optimization without the Lipschitz constant, J. Optim. Theory Appl., 79, 157-181, (1993) · Zbl 0796.49032
[43] Thomas, P; Dill, K, An iterative method for extracting energy-like quantities from protein structures, Proc. Natl. Acad. Sci. USA, 93, 11628-11633, (1996)
[44] Andreani, R; Birgin, E; Martinez, J; Schuverdt, M, On augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim., 18, 1286-1309, (2007) · Zbl 1151.49027
[45] Andreani, R; Birgin, E; Martinez, J; Schuverdt, M, Augmented Lagrangian methods under the constant positive linear dependence constraint qualification, Math. Program., 111, 5-32, (2008) · Zbl 1163.90041
[46] Dolan, E; Moré, J, Benchmarking optimization software with performance profiles, Math. Program., 91, 201-213, (2002) · Zbl 1049.90004
[47] Floudas, C.A., Klepeis, J., Pardalos P.: Global optimization approaches in protein folding and peptide docking. In: Farach-Colton, M., Roberts, F., Vingron, M., Waterman M. (eds.) Mathematical Support for Molecular Biology, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 47. American Mathematical Society, Providence (1999) · Zbl 0931.92014
[48] Taylor, R; Jewsbury, P; Essex, J, A review of protein-small molecule docking methods, J. Comput. Aided Mol. Des., 16, 151-166, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.