×

On generalized Laguerre matrix polynomials. (English) Zbl 1315.15020

Summary: The main object of the present paper is to introduce and study the generalized Laguerre matrix polynomials for a matrix that satisfies an appropriate spectral property. We prove that these matrix polynomials are characterized by the generalized hypergeometric matrix function. An explicit representation, integral expression and some recurrence relations in particular the three terms recurrence relation are obtained here. Moreover, these matrix polynomials appear as solution of a differential equation.

MSC:

15A54 Matrices over function rings in one or more variables
15A16 Matrix exponential and similar functions of matrices
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. S. Batahan, A new extension of Hermite matrix polynomials and its applications, Linear Algebra Appl., 419 (2006), 82-92.; · Zbl 1106.15016
[2] R. S. Batahan, Generalized Gegenbauer matrix polynomials, series expan- sion and some properties, In: Linear Algebra Research Advances, Editor G. D. Ling, Nova Science Publishers, (2007), 291-305.;
[3] E. Defez, L. Jódar, Some applications of the Hermite matrix polynomials series expansions, J. Comput. Appl. Math., 99 (1998), 105-117.; · Zbl 0929.33006
[4] E. Defez, L. Jódar, Chebyshev matrix polynomials and second order ma- trix di_erential equations, Util. Math., 61 (2002), 107{123.;} · Zbl 0998.15034
[5] N. Dunford, J. Schwartz, Linear Operators, Vol. I, Interscience, New York, (1957).; · Zbl 0635.47003
[6] E. Hille, Lectures on Ordinary Di_erential Equations, Addison-Wesley, New York, (1969).; · Zbl 0179.40301
[7] L. Jódar, R. Company, Hermite matrix polynomials and second order matrix di_erential equations, J. Approx. Theory Appl., 12 (2) (1996), 20{30.;} · Zbl 0858.15014
[8] L. Jódar, R. Company, E. Navarro, Laguerre matrix polynomials and system of second-order di_erential equations, Appl. Numer. Math., 15 (1994), 53{63.;} · Zbl 0821.34010
[9] L. Jódar, J. C. Cort_es, Some properties of gamma and beta matrix func- tion, Appl. Math. Lett., 11 (1) (1998), 89{93.;} · Zbl 1074.33002
[10] L. Jódar, J. C. Cort_es, On the hypergeometric matrix function, J. Com- put. Appl. Math., 99 (1998), 205{217.;} · Zbl 0933.33004
[11] L. Jódar, E. Defez, On Hermite matrix polynomials and Hermite matrix function, J. Approx. Theory Appl., 14 (1) (1998), 36{48.;} · Zbl 0911.15015
[12] L. Jódar, E. Def ez, A Connection between Laguerre’s and Hermite’s matrix polynomials, Appl. Math. Lett., 11 (1) (1998), 13{17.;} · Zbl 1074.33011
[13] L. Jódar, E. Defez, E. Ponsoda, Orthogonal matrix polynomials with respect to linear matrix moment functionals: Theory and applications, J. Approx. Theory Appl., 12 (1) (1996), 96{115.;} · Zbl 0853.42022
[14] L. Jódar, J. Sastre, The growth of Laguerre matrix polynomials on bounded intervals, Appl. Math. Lett., 13 (8) (2000), 21{26.;} · Zbl 1112.33300
[15] E. D. Rainville, Special Functions, The Macmillan Company, New York, (1960).; · Zbl 0092.06503
[16] J. Sastre, E. Defez, On the asymptotics of Laguerre matrix polynomial for large x and n, Appl. Math. Lett., 19 (2006), 721{727.;} · Zbl 1114.41023
[17] J. Sastre, E. Defez, L. J_odar, Laguerre matrix polynomial series expan- sion: Theory and computer applications, Math. Comput. Modelling, 44 (2006), 1025{1043.;} · Zbl 1137.15014
[18] J. Sastre, E. Defez and L. J_odar, Application of Laguerre matrix polyno- mials to the numerical inversion of Laplace transforms of matrix functions, Appl. Math. Lett., 24 (9) (2011), 1527{1532.;} · Zbl 1219.65157
[19] K. A. M. Sayyed, M. S. Metwally, R. S. Batahan. On Gegeralized Hermite matrix polynomials , Electron. J. Linear Algebra, 10 (2003), 272{279.;} · Zbl 1038.33005
[20] K. A. M. Sayyed, M. S. Metwally, R. S. Batahan. Gegenbauer matrix polynomials and second order matrix di_erential equations, Divulg. Mat., 12 (2) (2004) , 101{115.;} · Zbl 1102.33010
[21] H. M. Srivastava, H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, (1984).; · Zbl 0535.33001
[22] Z. Zhu, Z. Li, A note on Sobolev orthogonality for Laguerre matrix poly- nomials, Anal. Theory Appl., 23 (1) (2007), 26{34.;} · Zbl 1150.33003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.