Sarikaya, Mehmet Zeki; Erden, Samet On the weighted integral inequalities for convex function. (English) Zbl 1315.26031 Acta Univ. Sapientiae, Math. 6, No. 2, 194-208 (2014). Summary: In this paper, we establish several weighted inequalities for some differentiable mappings that are connected with the celebrated Hermite-Hadamard-Fejér type and Ostrowski type integral inequalities. The results presented here would provide extensions of those given in earlier works. Cited in 6 Documents MSC: 26D15 Inequalities for sums, series and integrals 26D07 Inequalities involving other types of functions 26A51 Convexity of real functions in one variable, generalizations Keywords:Ostrowski’s inequality; Montgomery’s identities; convex function; Hölder inequality PDFBibTeX XMLCite \textit{M. Z. Sarikaya} and \textit{S. Erden}, Acta Univ. Sapientiae, Math. 6, No. 2, 194--208 (2014; Zbl 1315.26031) Full Text: DOI OA License References: [1] F. Ahmad, N. S. Barnett, S. S. Dragomir, New weighted Ostrowski and Cebysev type inequalities, Nonlinear Anal., 71 (12) (2009), 1408-1412.; · Zbl 1238.26017 [2] F. Ahmad, A. Rafiq, N. A. Mir, Weighted Ostrowski type inequality for twice differentiable mappings, Global Journal of Research in Pure and Applied Math., 2 (2) (2006), 147-154.; · Zbl 1124.26011 [3] N. S. Barnett, S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math,, 27 (1) (2001), 109-114.; · Zbl 0987.26015 [4] N. S. Barnett, S. S. Dragomir, C. E. M. Pearce, A Quasi-trapezoid in¬equality for double integrals, ANZIAM J., 44 (2003), 355-364.; · Zbl 1035.26017 [5] S. S. Dragomir, P. Cerone, N. S. Barnett, J. Roumeliotis, An inequlity of the Ostrowski type for double integrals and applications for cubature formulae, Tamsui Oxf. J. Math,, 16 (1) (2000), 1-16.; · Zbl 0954.26009 [6] S. Hussain, M. A. Latif, M. Alomari, Generalized duble-integral Ostrowski type inequalities on time scales, Appl. Math. Letters, 24 (2011), 1461- 1467.; · Zbl 1222.26037 [7] M. E. Kiris, M. Z. Sarikaya, On the new generalization of Ostrowski type inequality for double integrals, International Journal of Modem Mathe¬matical Sciences, 9 (3) 2014, 221-229.; [8] L. Fejer, Über die Fourierreihen, II. Math. Naturwiss Anz. Ungar. Akad. Wiss., 24 (1906), 369-390. (Hungarian).; · JFM 37.0286.01 [9] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147 (2004), 137-146.; · Zbl 1034.26019 [10] A. M. Ostrowski, Uber die absolutabweichung einer differentiebaren funk- tion von ihrem integralmitelwert, Comment. Math. Helv., 10 (1938), 226- 227.; · Zbl 0018.25105 [11] J. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.; [12] A. Qayyum, A weighted Ostrowski-Griiss type inequality and applica¬tions, Proceeding of the World Cong, on Engineering, 2 (2009), 1-9.; [13] A. Rafiq, F. Ahmad, Another weighted Ostrowski-Griiss type inequality for twice differentiable mappings, Kragujcvac Journal of Mathematics, 31 (2008) , 43-51.; · Zbl 1199.26059 [14] M. Z. Sárikává, On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, Vol. LXXIX, 1 (2010), 129-134.; · Zbl 1212.26058 [15] M. Z. Sarikaya, On the Ostrowski type integral inequality for double in¬tegrals, Demonstratio Mathcmatica, Vol. XLV, 3 (2012), 533-540.; · Zbl 1275.26027 [16] M. Z. Sarikaya, H. Ogunmez, On the weighted Ostrowski type integral inequality for double integrals. The Arabian Journal for Science and En¬gineering (AJSE)-Mathematics, 36 (2011), 1153-1160.; [17] M. Z. Sarikaya, On the generalized weighted integral inequality for double integrals, Annals of the Alexandru loan Cuza University-Mathematics, accepted.; · Zbl 1363.26023 [18] M. Z. Sarikaya, On new Hermite Hadamard Fejer Type integral inequali¬ties, Studia Universitatis Babc§-Bolyai Mathcmatica, 57 (3) (2012), 377 386.; · Zbl 1289.26054 [19] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals. Submitted.; · Zbl 1389.26051 [20] K-L. Tseng, G-S. Yang, K-C. Hsu, Some inequalities for differentiable mappings and applications to Fejer inequality and weighted trapozidal formula, Taiwanese J. Math, 15 (4) (2011), 1737-1747,; · Zbl 1234.26063 [21] C.-L. Wang, X.-H. Wang, On an extension of Hadamard inequality for convex functions, Chin. Ann. Math., 3 (1982), 567-570.; · Zbl 0507.26005 [22] S.-H. Wu, On the weighted generalization of the Hermite-Hadamard in¬equality and its applications, The Rocky Mountain J. of Math., 39 (5)(2009) , 1741-1749.; · Zbl 1181.26042 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.