zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Classical automorphic forms and hypergeometric functions. (English) Zbl 0644.10019
The author exhibits a graded algebra of hypergeometric functions and shows how to canonically identify it with the graded algebra of modular forms for the full modular group SL(2,${\bbfZ})$. He also shows how Dedekind’s eta-function is related to the square root of a hypergeometric function and gives yet another simple proof of its functional equation.
Reviewer: A.Venkov

11F11Holomorphic modular forms of integral weight
33C05Classical hypergeometric functions, ${}_2F_1$
Full Text: DOI
[1] Bateman, P.: Manuscript project, higher transcendental functions. (1953) · Zbl 0051.34703
[2] S. Chowla and B. H. Gross, An integral formula, unpublished.
[3] Exton, H.: Handbook of hypergeometric integrals. (1978) · Zbl 0377.33001
[4] Ford, L. R.: Automorphic functions. (1951) · Zbl 55.0810.04
[5] Fricke, R.; Klein, F.: Vorlesungen über die theorie der automorphen funktionen, I, II. (1897) · Zbl 43.0529.08
[6] Jordan, C.: Cours d’analyse. (1909) · Zbl 40.0330.07
[7] Siegel, C. L.: A simple proof of ${\eta}(- 1 {\tau}) = {\eta}({\tau})$ \sqrt{} ${\tau}$ i. Mathematica 1, 4 (1954) · Zbl 0056.29504
[8] Stiller, P.: Special values of Dirichlet series, monodromy and the periods of automorphic forms. Mem. amer. Math. soc. 49, No. No. 299 (1984) · Zbl 0536.10023
[9] Stiller, P.: A note on automorphic forms of weight one and weight three. Trans. amer. Math. soc. 291, No. No. 2 (1985) · Zbl 0544.10020
[10] P. Stiller, ”{$\eta$}, {$\theta$}, {$\zeta$}”, in preparation.
[11] Van Der Poorten, A.: A proof that Euler missed--apéry’s proof of the irrationality of ${\zeta}$(3). Math. intelligencer (1979) · Zbl 0409.10028