×

zbMATH — the first resource for mathematics

On the application of dependence with complete connections to the metrical theory of G-continued fractions. Dependence with complete connections. (English) Zbl 0644.10035
Lith. Math. J. 27, No. 1, 32-40 (1987) and Lit. Mat. Sb. 27, No. 1, 68-79 (1987).
Every irrational x in the interval [G-2, G], with \(G=(1+\sqrt{5})/2\), has a continued fraction expansion of the form \(x=\epsilon_ 1/(\alpha_ 1+\epsilon_ 2/(\alpha_ 2+...\), where \(\epsilon_ j\) is either -1 or \(+1\), and each digit \(\alpha_ j\) is an odd positive integer. Via the theory of random systems with complete connections the author establishes a number of deep results on the digits \(\alpha_ j\), \(j\geq 1\), and on the approximants \(p_ n/q_ n=\epsilon_ 1/(\alpha_ 1+\epsilon_ 2/(\alpha_ 2+...+\epsilon_ n/\alpha_ n)...)\) including the limit relation, as \(n\to +\infty\), \(\lim n^{-1} \log | x-p_ n/q_ n| =-\pi^ 2/9 \log G\) almost everywhere.
Reviewer: J.Galambos

MSC:
11K16 Normal numbers, radix expansions, Pisot numbers, Salem numbers, good lattice points, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. Billingsley, Ergodic Theory and Information, Wiley, New York-London-Sidney (1965). · Zbl 0141.16702
[2] W. Doeblin, ?Remargues sur la theorie metrique des fractions continues,? Compositio Math.,7, 353?371 (1940). · JFM 66.0616.04
[3] T. E. Harris, ?On chains of infinite order,? Pac. J. Math.,5, 707?724 (1955). · Zbl 0066.11402 · doi:10.2140/pjm.1955.5.707
[4] H. Cohn, ?Zur les propriétés asymptotiques des systèmes à liaisons completes,? Bull. Math. Soc. Math. Phys., Roumaine,8, 7?21 (1964). · Zbl 0124.08803
[5] C. C. Heyde and D. J. Scott, ?Invariance principles for the law of the iterated logarithm for martingales and processes with stationary increments,? Ann. Probab.,1, 428?436 (1973). · Zbl 0259.60021 · doi:10.1214/aop/1176996937
[6] C. T. Ionescu Tulcea and G. Marinescu, ?Théorie ergodique pour des classes d’opérations non complement continues,? Ann. Math.,52(2), 140?147 (1950). · Zbl 0040.06502 · doi:10.2307/1969514
[7] M. Iosifescu, ?On the application of random systems with complete connections to the theory of f-expansions,? Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam (1972), Vol. 9.
[8] M. Iosifescu and A. Spataru, ?On denumerable chains of infinite order,? Z. Wahrsch. Verw. Gebiete,27, 195?214 (1973). · Zbl 0266.60064 · doi:10.1007/BF00535849
[9] M. Iosifescu, ?On Strassen’s version of the loglog law for some classes of dependent random variables,? Z. Wahrsch. Verw. Gebiete,24, 155?158 (1972). · Zbl 0232.60019 · doi:10.1007/BF00532541
[10] M. Iosifescu, Dependence with complete connections,? Lecture Notes, Fachbereich Mathematik, Johann Gutenberg Univ. in Mainz (1977).
[11] M. Iosifescu and R. Theodorescu, Random Processes and Learning, Springer, Berlin-Heidelberg-New York (1969). · Zbl 0194.51101
[12] S. Kalpazidou, ?On a random system with complete connections associated with the continued fraction to the nearer integer expansion,? Rev. Roum. Math. Pures Appl.,7, (1985). · Zbl 0576.60100
[13] S. Kalpazidou, ?On some bidimensional denumerable chains of infinite order,? Stochastic Processes and Their Applications,19(2) (1985). · Zbl 0627.60110
[14] S. Kalpozidous, ?Two random systems with complete connections associated with the Brodén-Borel-Levy type relations,? in: 14th Conference on Stochastic Processes and Their Applications, Gothenburg (1984).
[15] M. F. Norman, Markov Processes and Learning Models, Academic Press, New York (1972). · Zbl 0262.92003
[16] G. J. Rieger, ?On the metrical theory of continued fractions with odd partial quotients. Topics in classical number theory,? Colloquia Mathematica Societatis J. Bolyai,34, 1370?1417 (1984). · Zbl 0549.10039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.