Adamski, Wolfgang On regular extensions of contents and measures. (English) Zbl 0644.28002 J. Math. Anal. Appl. 127, 211-225 (1987). Let \({\mathcal K}\) be a lattice of subsets of X. Let N(\({\mathcal K})\) be the family of all [0,\(\infty]\)-valued set functions defined on \({\mathcal K}\) and vanishing at \(\emptyset\). If \(\lambda \in N({\mathcal K})\) we say \(\lambda\) to be modular if \[ \lambda (k_ 1)+\lambda (k_ 2) = \lambda (k_ 1\cap k_ 2)+\lambda (k_ 1\cup k_ 2) \] and \(\lambda\) is said to be supermodular if \[ \lambda (k_ 1)+\lambda (k_ 2)\leq \lambda (k_ 1\cap k_ 2)+\lambda (k_ 1\cup k_ 2). \] It is said to be tight if \[ \lambda (k_ 2) = \lambda (k_ 1)+Sup\{\lambda (k)| \quad k\in {\mathcal K},\quad k\subset k_ 2-k_ 1\} \] for \(k_ 1,k_ 2\in {\mathcal K}\) with \(k_ 1\subset k_ 2\). Based on the concept of tight set function and the fact that every supermodular set function defined on a lattice of sets admits a tight majorant, the author generalizes extension theorems due to others including that of his own [Trans. Am. Math. Soc. 283, 353-368 (1984; Zbl 0508.28001)]. Reviewer: M.K.Nayak Cited in 1 ReviewCited in 3 Documents MSC: 28A12 Contents, measures, outer measures, capacities Keywords:tight set function; supermodular set function; tight majorant; extension theorems Citations:Zbl 0508.28001 PDFBibTeX XMLCite \textit{W. Adamski}, J. Math. Anal. Appl. 127, 211--225 (1987; Zbl 0644.28002) Full Text: DOI References: [1] Adamski, W., Capacitylike set functions and upper envelopes of measures, Math. Ann., 229, 237-244 (1977) · Zbl 0341.28002 [2] Adamski, W., Tight set functions and essential measure, (Lecture Notes in Math., Vol. 945 (1982), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 1-14 · Zbl 0486.28003 [3] Adamski, W., Extensions of tight set functions with applications in topological measure theory, Trans. Amer. Math. Soc., 283, 353-368 (1984) · Zbl 0508.28001 [4] Anger, B.; Lembcke, J., Hahn-Banach type theorems for hypolinear functionals, Math. Ann., 209, 127-151 (1974) · Zbl 0268.46006 [5] Bachman, G.; Sultan, A., On regular extensions of measures, Pacific J. Math., 86, 389-395 (1980) · Zbl 0441.28003 [6] Delbaen, F., Convex games and extreme points, J. Math. Anal. Appl., 45, 210-233 (1974) · Zbl 0337.90084 [7] Graf, S., Measurable weak selections, (Lecture Notes in Math., Vol. 794 (1980), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York), 117-140 · Zbl 0426.28012 [8] Hewitt, E., On two problems of Urysohn, Ann. of Math. (2), 47, 503-509 (1946) · Zbl 0060.39511 [9] Kannai, Y., Countably additive measures in cores of games, J. Math. Anal. Appl., 27, 227-240 (1969) · Zbl 0181.46902 [10] Kelley, J. L.; Nayak, M. K.; Srinivasan, T. P., Pre-measures on lattices of sets, II, (Tucker, D. H.; Maynard, H. B., Vector and Operator Valued Measures and Applications (1973), Academic Press: Academic Press New York), 155-164 · Zbl 0293.28002 [11] Lembcke, J., Konservative Abbildungen und Fortsetzung regulärer Maβe, Z. Wahrsch. Verw. Gebiete, 15, 57-96 (1970) · Zbl 0191.34202 [12] Marczewski, E., On compact measures, Fund. Math., 40, 113-124 (1953) · Zbl 0052.04902 [13] Oxtoby, J. C., Measure and Category (1980), Springer-Verlag: Springer-Verlag New York/Heidelberg/Berlin · Zbl 0217.09201 [14] Pachl, J. K., Disintegration and compact measures, Math. Scand., 43, 157-168 (1978) · Zbl 0402.28006 [15] Pfanzagl, J.; Pierlo, W., Compact Systems of Sets, (Lecture Notes in Math., Vol. 16 (1966), Springer-Verlag: Springer-Verlag Berlin/Heidelberg/New York) · Zbl 0161.36604 [16] Schmeidler, D., Cores of exact games I, J. Math. Anal. Appl., 40, 214-225 (1972) · Zbl 0243.90071 [17] Schwartz, L., Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures (1973), Oxford Univ. Press: Oxford Univ. Press Bombay · Zbl 0298.28001 [18] Szeto, M., On maximal measures with respect to a lattice, (Goldin, G. A.; Wheeler, R. F., Measure Theory and its Applications (1981), Northern Illinois Univ: Northern Illinois Univ De Kalb, IL), 277-282 · Zbl 0475.28005 [19] Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl., 48, 161-228 (1965) · Zbl 0152.04202 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.