Xiao, Sai; Kottas, Athanasios; Sansó, Bruno Modeling for seasonal marked point processes: an analysis of evolving hurricane occurrences. (English) Zbl 1454.62284 Ann. Appl. Stat. 9, No. 1, 353-382 (2015). Summary: Seasonal point processes refer to stochastic models for random events which are only observed in a given season. We develop nonparametric Bayesian methodology to study the dynamic evolution of a seasonal marked point process intensity. We assume the point process is a nonhomogeneous Poisson process and propose a nonparametric mixture of beta densities to model dynamically evolving temporal Poisson process intensities. Dependence structure is built through a dependent Dirichlet process prior for the seasonally-varying mixing distributions. We extend the nonparametric model to incorporate time-varying marks, resulting in flexible inference for both the seasonal point process intensity and for the conditional mark distribution. The motivating application involves the analysis of hurricane landfalls with reported damages along the U.S. Gulf and Atlantic coasts from 1900 to 2010. We focus on studying the evolution of the intensity of the process of hurricane landfall occurrences, and the respective maximum wind speed and associated damages. Our results indicate an increase in the number of hurricane landfall occurrences and a decrease in the median maximum wind speed at the peak of the season. Introducing standardized damage as a mark, such that reported damages are comparable both in time and space, we find that there is no significant rising trend in hurricane damages over time. Cited in 11 Documents MSC: 62M30 Inference from spatial processes 60G55 Point processes (e.g., Poisson, Cox, Hawkes processes) 62P12 Applications of statistics to environmental and related topics Keywords:Bayesian nonparametrics; dependent Dirichlet process; hurricane intensity; marked Poisson process; Markov chain Monte Carlo; risk assessment × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Adams, R. P., Murray, I. and MacKay, D. J. C. (2009). Tractable nonparametric Bayesian inference in Poisson processes with Gaussian process intensities. In Proceedings of the 26 th International Conference on Machine Learning , Montreal, Canada. [2] Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Ann. Statist. 2 1152-1174. · Zbl 0335.60034 · doi:10.1214/aos/1176342871 [3] Brix, A. and Diggle, P. J. (2001). Spatiotemporal prediction for log-Gaussian Cox processes. J. R. Stat. Soc. Ser. B. Stat. Methodol. 63 823-841. · Zbl 0996.62076 · doi:10.1111/1467-9868.00315 [4] Chavas, D. R., Yonekura, E., Karamperidou, C., Cavanaugh, N. and Serafin, K. (2012). U.S. Hurricanes and economic damage: An extreme value perspective. Natural Hazards Review 14 237-246. [5] Collins, D. J. and Lowe, S. P. (2001). A macro validation dataset for U.S. hurricane models. In Casualty Actuarial Society Forum 217-252. Casualty Actuarial Society, Arlington, VA. [6] Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes. Vol. I : Elementary Theory and Methods , 2nd ed. Springer, New York. · Zbl 1026.60061 · doi:10.1007/b97277 [7] Elsner, J. B. and Jagger, T. H. (2013). Hurricane Climatology : A Modern Statistical Guide Using R . Oxford Univ. Press, Oxford. [8] Elsner, J. B., Xu, F. N. and Jagger, T. H. (2004). Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. Journal of Climate 17 2652-2666. [9] Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436 686-688. [10] Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Statist. 1 209-230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360 [11] Gamerman, D., Rezende dos Santos, T. and Franco, G. C. (2013). A non-Gaussian family of state-space models with exact marginal likelihood. J. Time Series Anal. 34 625-645. · Zbl 1306.62196 · doi:10.1111/jtsa.12039 [12] Ihler, A. T. and Smyth, P. J. (2007). Learning time-intensity profiles of human activity using non-parametric Bayesian models. In Neural Information Processing Systems 19 (B. Schölkopf, J. Platt and T. Hoffman, eds.) 625-632. MIT Press, Cambridge, MA. [13] Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. J. Amer. Statist. Assoc. 96 161-173. · Zbl 1014.62006 · doi:10.1198/016214501750332758 [14] Ishwaran, H. and James, L. F. (2004). Computational methods for multiplicative intensity models using weighted gamma processes: Proportional hazards, marked point processes, and panel count data. J. Amer. Statist. Assoc. 99 175-190. · Zbl 1089.62520 · doi:10.1198/016214504000000179 [15] Jagger, T. H. and Elsner, J. B. (2006). Climatology models for extreme hurricane winds near the United States. Journal of Climate 19 3220-3236. [16] Jagger, T., Elsner, J. and Burch, R. (2011). Climate and solar signals in property damage losses from hurricanes affecting the United States. Natural Hazards 58 541-557. [17] Ji, C., Merl, D., Kepler, T. B. and West, M. (2009). Spatial mixture modelling for unobserved point processes: Examples in immunofluorescence histology. Bayesian Anal. 4 297-315. · Zbl 1330.62355 · doi:10.1214/09-BA411 [18] Katz, R. W. (2002). Stochastic modeling of hurricane damage. Journal of Applied Meteorology 41 754-762. [19] Katz, R. W. (2010). Statistics of extremes in climate change. Climatic Change 100 71-76. [20] Kottas, A. (2006). Dirichlet process mixtures of Beta distributions, with applications to density and intensity estimation. In Proceedings of the Workshop on Learning with Nonparametric Bayesian Methods , 23 rd International Conference on Machine Learning , Pittsburgh, PA. [21] Kottas, A. and Sansó, B. (2007). Bayesian mixture modeling for spatial Poisson process intensities, with applications to extreme value analysis. J. Statist. Plann. Inference 137 3151-3163. · Zbl 1114.62100 · doi:10.1016/j.jspi.2006.05.022 [22] Kottas, A., Wang, Z. and Rodríguez, A. (2012). Spatial modeling for risk assessment of extreme values from environmental time series: A Bayesian nonparametric approach. Environmetrics 23 649-662. · doi:10.1002/env.2177 [23] Kottas, A., Behseta, S., Moorman, D., Poynor, V. and Olson, C. (2012). Bayesian nonparametric analysis of neuronal intensity rates. Journal of Neuroscience Methods 203 241-253. [24] Landsea, C. W. (1993). A climatology of intense (or major) Atlantic hurricanes. Monthly Weather Review 121 1703-1713. [25] Landsea, C., Pielke, R. A., Mestas-Nuñez, A. and Knaff, J. (1999). Atlantic Basin hurricanes: Indices of climatic changes. Climatic Change 42 89-129. [26] Liang, S., Carlin, B. P. and Gelfand, A. E. (2009). Analysis of Minnesota colon and rectum cancer point patterns with spatial and nonspatial covariate information. Ann. Appl. Stat. 3 943-962. · Zbl 1196.62143 · doi:10.1214/09-AOAS240 [27] MacEachern, S. N. (1999). Dependent Nonparametric Processes . American Statistical Association, Alexandria, VA. [28] MacEachern, S. N. (2000). Dependent Dirichlet processes. Technical report, Dept. Statistics, Ohio State Univ. [29] McKenzie, E. (1985). An autoregressive process for Beta random variables. Management Science 31 988-997. · Zbl 0607.62104 · doi:10.1287/mnsc.31.8.988 [30] Møller, J., Syversveen, A. R. and Waagepetersen, R. P. (1998). Log Gaussian Cox processes. Scand. J. Stat. 25 451-482. · Zbl 0931.60038 · doi:10.1111/1467-9469.00115 [31] Møller, J. and Waagepetersen, R. P. (2004). Statistical Inference and Simulation for Spatial Point Processes. Monographs on Statistics and Applied Probability 100 . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1044.62101 [32] Murnane, R. J. and Elsner, J. B. (2012). Maximum wind speeds and US hurricane losses. Geophysical Research Letters 39 L16707. [33] Neumayer, E. and Barthel, F. (2011). Normalizing economic loss from natural disasters: A global analysis. Global Environmental Change 21 13-24. [34] Parisi, F. and Lund, R. (2000). Seasonality and return periods of landfalling Atlantic Basin hurricanes. Aust. N. Z. J. Stat. 42 271-282. [35] Pielke, R. A. Jr. and Pielke, R. A. (1997). Hurricanes : Their Nature and Impacts on Society . Wiley, London. [36] Pielke, R. A. Jr., Gratz, J., Landsea, C. W., Collins, D., Saunders, M. A. and Musulin, R. (2008). Normalized hurricane damage in the United States: 1900-2005. Natural Hazards Review 9 29-42. [37] Robbins, M. W., Lund, R. B., Gallagher, C. M. and Lu, Q. (2011). Changepoints in the North Atlantic tropical cyclone record. J. Amer. Statist. Assoc. 106 89-99. · Zbl 1396.62264 · doi:10.1198/jasa.2011.ap10023 [38] Schmidt, S., Kemfert, C. and Hoeppe, P. (2010). The impact of socio-economics and climate change on tropical cyclone losses in the USA. Regional Environmental Change 10 13-26. [39] Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica 4 639-650. · Zbl 0823.62007 [40] Solow, A. R. (1989). Statistical modeling of storm counts. Journal of Climate 2 131-136. [41] Taddy, M. A. (2010). Autoregressive mixture models for dynamic spatial Poisson processes: Application to tracking intensity of violent crime. J. Amer. Statist. Assoc. 105 1403-1417. · Zbl 1388.62379 · doi:10.1198/jasa.2010.ap09655 [42] Taddy, M. A. and Kottas, A. (2012). Mixture modeling for marked Poisson processes. Bayesian Anal. 7 335-361. · Zbl 1330.62200 · doi:10.1214/12-BA711 [43] Wolpert, R. L. and Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics. Biometrika 85 251-267. · Zbl 0951.62082 · doi:10.1093/biomet/85.2.251 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.