×

A Bayesian regression tree approach to identify the effect of nanoparticles’ properties on toxicity profiles. (English) Zbl 1454.62356

Summary: We introduce a Bayesian multiple regression tree model to characterize relationships between physico-chemical properties of nanoparticles and their in-vitro toxicity over multiple doses and times of exposure. Unlike conventional models that rely on data summaries, our model solves the low sample size issue and avoids arbitrary loss of information by combining all measurements from a general exposure experiment across doses, times of exposure, and replicates. The proposed technique integrates Bayesian trees for modeling threshold effects and interactions, and penalized B-splines for dose- and time-response surface smoothing. The resulting posterior distribution is sampled by Markov Chain Monte Carlo. This method allows for inference on a number of quantities of potential interest to substantive nanotoxicology, such as the importance of physico-chemical properties and their marginal effect on toxicity. We illustrate the application of our method to the analysis of a library of 24 nano metal oxides.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis

Software:

BartPy; tgp; BayesTree

References:

[1] Besag, J. and Kooperberg, C. (1995). On conditional and intrinsic autoregressions. Biometrika 82 733-746. · Zbl 0899.62123
[2] Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and Regression Trees . Wadsworth, Belmont, CA. · Zbl 0541.62042
[3] Chipman, H. A., George, E. I. and McCulloch, R. E. (1998). Bayesian CART model search. J. Amer. Statist. Assoc. 93 935-948. · doi:10.1080/01621459.1998.10473707
[4] Chipman, H. A., George, E. I. and McCulloch, R. E. (2002). Bayesian treed models. Machine Learning 48 299-320. · Zbl 0998.68072 · doi:10.1023/A:1013916107446
[5] Chipman, H. A., George, E. I. and McCulloch, R. E. (2010a). BART: Bayesian additive regression trees. Ann. Appl. Stat. 4 266-298. · Zbl 1189.62066 · doi:10.1214/09-AOAS285
[6] Chipman, H. A., George, E. I. and McCulloch, R. E. (2010b). Implementation of BART: Bayesian additive regression trees. R package version 0.3-1.1. · Zbl 1189.62066
[7] De’ath, G. (2002). Multivariate regression trees: A new technique for modeling species-environment relationships. Ecology 83 1105-1117.
[8] Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statist. Sci. 11 89-121. · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[9] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Ann. Statist. 29 1189-1232. · Zbl 1043.62034 · doi:10.1214/aos/1013203451
[10] Galimberti, G. and Montanari, A. (2002). Regression trees for longitudinal data with time-dependent covariates. In Classification , Clustering , and Data Analysis 391-398. Springer, Berlin. · doi:10.1007/978-3-642-56181-8_43
[11] Gramacy, R. B. and Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. J. Amer. Statist. Assoc. 103 1119-1130. · Zbl 1205.62218 · doi:10.1198/016214508000000689
[12] Gramacy, R. B. and Taddy, M. A. (2010). Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an R package for treed Gaussian process models. Journal of Statistical Software 33 1-48. · doi:10.1007/s11222-008-9108-5
[13] Gramacy, R. B., Taddy, M. and Wild, S. M. (2013). Variable selection and sensitivity analysis using dynamic trees, with an application to computer code performance tuning. Ann. Appl. Stat. 7 51-80. · Zbl 1454.62239 · doi:10.1214/12-AOAS590
[14] Konomi, B., Karagiannis, G., Sarkar, A., Sun, X. and Lin, G. (2014). Bayesian treed multivariate Gaussian process with adaptive design: Application to a carbon capture unit. Technometrics 56 145-158. · doi:10.1080/00401706.2013.879078
[15] Lang, S. and Brezger, A. (2004). Bayesian P-splines. J. Comput. Graph. Statist. 13 183-212. · doi:10.1198/1061860043010
[16] Liu, R., Rallo, R., George, S., Ji, Z., Nair, S., Nel, A. E. and Cohen, Y. (2011). Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small 7 1118-1126.
[17] Low-Kam, C., Telesca, D., Ji, Z., Zhang, H., Xia, T., Zink, J. I. and Nel, A. (2015). Supplement to “A Bayesian regression tree approach to identify the effect of nanoparticles’ properties on toxicity profiles.” , DOI:10.1214/14-AOAS797SUPPB . · Zbl 1454.62356
[18] Patel, T., Telesca, D., Low-Kam, C., Ji, Z. X., Zhang, H. Y., Xia, T., Zinc, J. I. and Nel, A. E. (2014). Relating nano-particle properties to biological outcomes in exposure escalation experiments. Environmetrics 25 57-68. · doi:10.1002/env.2246
[19] Ramsay, J. O. (1998). Monotone regression splines in action. Statist. Sci. 3 425-441.
[20] Rowe, D. B. (2003). Multivariate Bayesian Statistics : Models for Source Separation and Signal Unmixing . Chapman & Hall/CRC, Boca Raton, FL. · Zbl 1031.62023
[21] Segal, M. R. (1992). Tree-structured methods for longitudinal data. J. Amer. Statist. Assoc. 87 407-418.
[22] Sela, R. J. and Simonoff, J. S. (2012). RE-EM trees: A data mining approach for longitudinal and clustered data. Mach. Learn. 86 169-207. · Zbl 1238.68131 · doi:10.1007/s10994-011-5258-3
[23] Wu, Y., Tjelmeland, H. and West, M. (2007). Bayesian CART: Prior specification and posterior simulation. J. Comput. Graph. Statist. 16 44-66. · doi:10.1198/106186007X180426
[24] Yu, Y. and Lambert, D. (1999). Fitting trees to functional data, with an application to time-of-day patterns. J. Comput. Graph. Statist. 8 749-762.
[25] Yu, K., Wheeler, W., Li, Q., Bergen, A. W., Caporaso, N., Chatterjee, N. and Chen, J. (2010). A partially linear tree-based regression model for multivariate outcomes. Biometrics 66 89-96. · Zbl 1187.62182 · doi:10.1111/j.1541-0420.2009.01235.x
[26] Zhang, S., Shih, Y.-C. T. and Müller, P. (2007). A spatially-adjusted Bayesian additive regression tree model to merge two datasets. Bayesian Anal. 2 611-633. · Zbl 1331.62170 · doi:10.1214/07-BA224
[27] Zhang, H., Ji, Z., Xia, T., Meng, H., Low-Kam, C., Liu, R., Pokhrel, S., Lin, S., Wang, X., Liao, Y.-P., Wang, M., Li, L., Rallo, R., Damoiseaux, R., Telesca, D., Mädler, L., Cohen, Y., Zink, J. I. and Nel, A. E. (2012). Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation. ACS Nano 6 4349-4368.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.