Spencer, Simon E. F.; Hill, Steven M.; Mukherjee, Sach Inferring network structure from interventional time-course experiments. (English) Zbl 1454.62403 Ann. Appl. Stat. 9, No. 1, 507-524 (2015). Summary: Graphical models are widely used to study biological networks. Interventions on network nodes are an important feature of many experimental designs for the study of biological networks. In this paper we put forward a causal variant of dynamic Bayesian networks (DBNs) for the purpose of modeling time-course data with interventions. The models inherit the simplicity and computational efficiency of DBNs but allow interventional data to be integrated into network inference. We show empirical results, on both simulated and experimental data, that demonstrate the need to appropriately handle interventions when interventions form part of the design. Cited in 2 Documents MSC: 62P10 Applications of statistics to biology and medical sciences; meta analysis 62F15 Bayesian inference Keywords:Bayesian inference; network inference; structure learning; causal inference; dynamic Bayesian network; causal Bayesian network × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Äijö, T. and Lähdesmäki, H. (2009). Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25 2937-2944. [2] Akbani, R. et alet al. (2014). A pan-cancer proteomic perspective on the Cancer Genome Atlas. Nature Communications 5 3887. [3] Bansal, M., Gatta, G. D. and di Bernardo, D. (2006). Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22 815-822. [4] Bender, C., Henjes, F., Fröhlich, H., Wiemann, S., Korf, U. and Beissbarth, T. (2010). Dynamic deterministic effects propagation networks: Learning signalling pathways from longitudinal protein array data. Bioinformatics 26 i596-i602. [5] Dawid, A. P. (2007). Fundamentals of statistical causality. Research Report No. 279, Dept. Statistical Science, Univ. College, London. [6] Denison, D. G. T. et alet al. (2002). Bayesian Methods for Non-Linear Classification and Regression . Wiley, Chichester, UK. [7] Eaton, D. and Murphy, K. (2007). Exact Bayesian structure learning from uncertain interventions. Journal of Machine Learning Research : Workshop and Conference Proceedings 2 107-114. [8] Friedman, N., Murphy, K. and Russell, S. (1998). Learning the structure of dynamic probabilistic networks. In Proceedings of the 14 th Conference on Uncertainty in Artificial Intelligence 139-147. Morgan Kaufmann, San Francisco, CA. [9] Hill, S. M. et alet al. (2012). Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics 28 2804-2810. [10] Husmeier, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19 2271-2282. [11] Hyttinen, A., Eberhardt, F. and Hoyer, P. O. (2013). Experiment selection for causal discovery. J. Mach. Learn. Res. 14 3041-3071. · Zbl 1318.62175 [12] Ideker, T. and Krogan, N. J. (2012). Differential network biology. Mol. Syst. Biol. 8 565. [13] Kohn, R., Smith, M. and Chan, D. (2001). Nonparametric regression using linear combinations of basis functions. Stat. Comput. 11 313-322. · doi:10.1023/A:1011916902934 [14] Maathuis, M. H., Kalisch, M. and Bühlmann, P. (2009). Estimating high-dimensional intervention effects from observational data. Ann. Statist. 37 3133-3164. · Zbl 1191.62118 · doi:10.1214/09-AOS685 [15] Maher, B. (2012). ENCODE: The human encyclopaedia. Nature 489 46-48. [16] Mukherjee, S. and Speed, T. P. (2008). Network inference using informative priors. Proc. Natl. Acad. Sci. USA 105 14313-14318. [17] Murphy, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learning. Ph.D. thesis, Univ. California, Berkeley. [18] Neve, R. M. et alet al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10 515-527. [19] Oates, C. J. and Mukherjee, S. (2012). Network inference and biological dynamics. Ann. Appl. Stat. 6 1209-1235. · Zbl 1257.62108 · doi:10.1214/11-AOAS532 [20] Pearl, J. (2000). Causality : Models , Reasoning , and Inference . Cambridge Univ. Press, Cambridge. · Zbl 0959.68116 [21] Pearl, J. (2009). Causal inference in statistics: An overview. Stat. Surv. 3 96-146. · Zbl 1300.62013 · doi:10.1214/09-SS057 [22] Pearl, J. and Bareinboim, E. (2014). External validity: From do-calculus to transportability across populations. Statist. Sci. 29 579-595. · Zbl 1331.62326 · doi:10.1214/14-STS486 [23] Scott, J. G. and Berger, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the variable-selection problem. Ann. Statist. 38 2587-2619. · Zbl 1200.62020 · doi:10.1214/10-AOS792 [24] Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. J. Econometrics 75 317-344. · Zbl 0864.62025 · doi:10.1016/0304-4076(95)01763-1 [25] Spencer, S. E. F., Hill, S. M. and Mukherjee, S. (2015). Supplement to “Inferring network structure from interventional time-course experiments.” . · Zbl 1454.62403 · doi:10.1214/15-AOAS806 [26] Werhli, A. V. and Husmeier, D. (2007). Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol. 6 47 pp. (electronic). · Zbl 1166.62373 · doi:10.2202/1544-6115.1282 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.