Mixing and asymptotic distribution modulo 1. (English) Zbl 0645.10042

If \(\mu\) is a probability measure which is invariant and ergodic with respect to the transformation \(x\mapsto qx\) on the circle \(\mathbb{R}/\mathbb{Z}\), then according to the ergodic theorem, \(\{q^nx\}\) has the asymptotic distribution \(\mu\) for \(\mu\)-a.e. \(x\). On the other hand, Weyl showed that when \(\mu\) is Lebesgue measure, \(\lambda\), and \(\{m_j\}\) is an arbitrary sequence of integers increasing strictly to \(\infty\), the asymptotic distribution of \(\{m_jx\}\) is \(\lambda\) for \(\lambda\)-a.e. x.
In this article, the author investigates the asymptotic distributions of \(\{m_ jx\}\) \(\mu\)-a.e. for fairly arbitrary \(\{m_ j\}\) under some strong mixing conditions on \(\mu\). The result is a kind of stable ergodicity: the distributions are obtained from simple operations applied to \(\mu\). The ideas extend to the situation of a sequence of transformations \(x\mapsto q_nx\) where invariance is not present. This gives information about many Riesz products and Bernoulli convolutions. Finally, the theory is applied to resolve some questions about \(H\)-sets.
Reviewer: Russell Lyons


11K06 General theory of distribution modulo \(1\)
28D05 Measure-preserving transformations
Full Text: DOI


[1] Zygmund, Trigonometric Series I, II (1979) · Zbl 0628.42001
[2] Lyons, Studia Math. 86 pp 59– (1987)
[3] DOI: 10.1007/BF01475864 · doi:10.1007/BF01475864
[4] DOI: 10.2307/1971372 · Zbl 0583.43006 · doi:10.2307/1971372
[5] DOI: 10.2307/2044653 · Zbl 0545.28007 · doi:10.2307/2044653
[6] DOI: 10.2307/2044398 · Zbl 0468.28013 · doi:10.2307/2044398
[7] Katznelson, An Introduction to Harmonic Analysis (1976)
[8] Graham, Essays in Commutative Harmonic Analysis (1979) · Zbl 0439.43001 · doi:10.1007/978-1-4612-9976-9
[9] Cornfeld, Ergodic Theory (1982) · doi:10.1007/978-1-4615-6927-5
[10] DOI: 10.1007/BF02756822 · Zbl 0283.60053 · doi:10.1007/BF02756822
[11] Bari, A Treatise on Trigonometric Series I, II (1964)
[12] Smorodinsky, Ergodic Theory Entropy (1971) · doi:10.1007/BFb0066086
[13] none, Amer. Math. Soc. Transl. 39 pp 1– (1964) · Zbl 0154.15703 · doi:10.1090/trans2/039/01
[14] Rokhlin, Izv. Akad. Nauk SSSR Ser. Mat. 25 pp 499– (1961)
[15] none, Moscov. Gos. Univ. U?. Zap. 165 pp 79– (1954)
[16] Pjatecki?-Šapiro, Moscov. Gos. Univ. U?. Zap. 155 pp 54– (1952)
[17] Petit, C. R. Acad. Sc. 280 pp 17– (1975)
[18] DOI: 10.1090/S0002-9904-1952-09580-X · Zbl 0046.11504 · doi:10.1090/S0002-9904-1952-09580-X
[19] none, Gesammelte Abhandlungen 1 pp 563– (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.