Points de Heegner et dérivées de fonctions L p-adiques. (Heegner points and derivatives of p-adic L-functions). (French) Zbl 0645.14010

A p-adic analogue of the Gross-Zagier theorem is proven. As is well known, the results of Gross and Zagier yield a relation between the derivative at 1 of a certain L-series attached to a modular form for \(\Gamma_ 0(N)\) with some character, and the height of so-called Heegner points [cf. B. H. Gross and D. B. Zagier, Invent. Math. 84, 225-320 (1986; Zbl 0608.14019)].
A similar relation turns out to be true for p-adic versions of these L- functions and height pairings. A p-adic height pairing (on an abelian variety over a number field) is defined as a sum of local contributions at each place of the field; the main difference with the “usual” case is that now the local Néron symbols are p-adic numbers. Such local symbols can be defined in this case except maybe at a place above p if the reduction of the abelian variety there is not ordinary. It turns out that the computation of these local symbols for places which don’t divide p, on Heegner points on the Jacobian of \(X_ 0(N)\), is already done in the Gross-Zagier paper. The bigger part of this paper is therefore devoted to the analysis of the p-adic L-functions.
An important application of these results appears in very recent work of Kolyvagin.
Reviewer: J.Top


14G10 Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture)
11F33 Congruences for modular and \(p\)-adic modular forms
11S40 Zeta functions and \(L\)-functions
14K15 Arithmetic ground fields for abelian varieties
14G20 Local ground fields in algebraic geometry


Zbl 0608.14019
Full Text: DOI EuDML


[1] Atkin, A., Lehner, J.: Hecke operators on? 0(m). Math. Ann.185, 134-160 (1970) · Zbl 0185.15502
[2] Bernardi, D., Goldstein, C.: Une variantep-adique de la conjecture de Birch et Swinnerton-Dyer. C.R. Acad. Sci., Paris, Ser. I301, 455-458 (1985) · Zbl 0597.14017
[3] Bertrand, D.: Propriétés arithmétiques de fonctions thêta à plusieurs variables. Lect. Notes in Math., vol. 1068, pp. 17-22. Berlin-Heidelberg-New York-Tokyo: Springer 1984
[4] Birch, B., Stephens, N.: Heegner’s construction of points on the curvey 2=x3-1728e3. Séminaire de Théorie des Nombres de Paris 1981-82, Progress in Math. vol.38, pp. 1-19. Boston: Birkhäuser 1983
[5] Bloch, S.: A note on height parings, Tamagawa numbers and the Birch and Swinnerton-Dyer conjecture. Invent. Math.58, 65-76 (1980) · Zbl 0444.14015
[6] Gross, B.H.: Heegner points onX 0(NN). Dans: Modular forms, Rankin, R.A. (ed.), pp. 87-105. New York Chichester Brisbane Toronto: Ellis Horwood Limited 1984
[7] Gross, B.H., Zagier, H.: Heegner points and derivatives ofL-series. Invent. Math.84, 225-320 (1986) · Zbl 0608.14019
[8] Haran, S.:p-acidL-functions for elliptic curves overCM fields. Ph.D.M.I.T. (1983)
[9] Hida, H.: Ap-adic measure attached to the zeta function associated with two elliptic modular forms I. Invent. Math.79, 159-195 (1985) · Zbl 0573.10020
[10] Hazewinkel, M.: Norm maps for formal groups IV. Michigan Math. J.25, 245-255 (1978) · Zbl 0382.14015
[11] Katz, N.: The Eisenstein measure andp-adic interpolation. Am. J. Math.99, 238-311 (1977) · Zbl 0375.12022
[12] Lubin, J., Rosen, M.: The norm map for ordinary abelian varieties. J. Algebra52, 236-240 (1978) · Zbl 0417.14035
[13] Lubin, J., Serre, J-P., Tate, J.: Seminar at Woods Hole Institute on algebraic geometry (1964)
[14] Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math.25, 1-61 (1974) · Zbl 0281.14016
[15] Mazur, B., Tate, J.: Canonical height pairings via biextensions. Vol. dédié à Shafarevitch, Progress in Math., vol. 35-36, pp. 195-237. Boston: Birkhäuser (1983) · Zbl 0574.14036
[16] Mazur, B., Tate, J., Teitelbaum, J.: Onp-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. Math.84, 1-48 (1986) · Zbl 0699.14028
[17] Néron, A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math.82, 249-331 (1965) · Zbl 0163.15205
[18] Oesterle, J.: Construction de hauteurs archimédiennes etp-adiques suivant la méthode de Bloch. Séminaire de Théorie des Nombres de Paris 1980-81. Prog. Math.22, 175-192 (1982)
[19] Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d’Iwasawa. Mém. Soc. Math. Fr. 17, 1-130 (1984) · Zbl 0599.14020
[20] Perrin-Riou, B.: FonctionsL p-adiques attachées à une courbe elliptique modulaire et à un corps quadratique imaginaire J. Lond. Math. Soc., 1985 (à paraître)
[21] Perrin-Riou, B.: FonctionsL p-adiques, théorie d’Iwasawa et points de Heegner. Bull. Soc. Math. Fr. (à paraître) · Zbl 0636.14005
[22] Perrin-Riou, B.: FonctionsL p-adiques et points de Heegner. Journ. Arithmétiques de Besançon Astérioque 147-148; Soc. Math. France (Paris) 1987
[23] Serre, J-P.: Corps locaux, Paris: Hermann 1968
[24] Serre, J-P.: Modular forms of weight one and Galois representations. Dans: Algebraic numbers field, Frohlich, A. (ed.). London: Academic Press 1977 · Zbl 0366.10022
[25] Schneider, P.:p-adic height pairings, I. Invent. Math.69, 401-409 (1982) · Zbl 0509.14048
[26] Schneider, P.:p-adic height pairings, II. Invent. Math.79, 329-374 (1985) · Zbl 0571.14021
[27] Schneider, P.: Arithmetic of formal groups and applications, I: universal norm subgroups. Invent. Math.87, 587-602 (1987) · Zbl 0608.14034
[28] Waldspurger, J.-L.: Correspondance de Shimura et quaternions. Prépublication · Zbl 0454.10015
[29] Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math.111, 143-211 (1964) · Zbl 0203.03305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.