×

zbMATH — the first resource for mathematics

Morse index of some min-max critical points. I: Application to multiplicity results. (English) Zbl 0645.58013
We give here a general result on lower bounds for Morse indices of critical points obtained by some min-max principles. Combining this information with a semi-classical inequality yields sharp estimates on the growth of some critical values, from which we deduce new multiplicity results for solutions of semilinear second-order equations.
Reviewer: A.Bahri

MSC:
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Une méthode perturbative en théorie de Morse, Thèse d’Etat, Publications de l’Université Paris VI, 1981.
[2] Bahri, J. of Functional Analysis 41 pp 397– (1981)
[3] Bahri, Trans. A.M.S. 267 pp 1– (1981)
[4] Bahri, Acta Math. 152 pp 143– (1984)
[5] and , Morse index of some min-max critical points, II, to appear.
[6] Bahri, Cr. Acad. Sci. Paris 301 pp 145– (1985)
[7] Struwe, Manuscripta Math. 32 pp 335– (1980)
[8] Rabinowitz, Trans. Amer. Math. Soc. 272 pp 753– (1982)
[9] Hofer, J. London Math. Soc. 31 pp 566– (1985)
[10] Pucci, J. Diff. Eq. 60 pp 142– (1985)
[11] Pucci, J. Funct. Anal. 59 pp 185– (1984)
[12] Pucci, Trans. Amer. Math. Soc. 299 pp 115– (1987)
[13] Ambrosetti, J. Funct. Anal. 14 (1973)
[14] Variational methods for nonlinear eigenvalue problems, in Eigenvalues of Nonlinear Problems, Ediz. Cremonese, Rome, 1972.
[15] Differential Topology, Springer Verlag, 1976. · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[16] and , Metodi perturbattivi nella teoria di Morse, Bolletino UMI-(4)-11, No. 3, supp. 1975, pp. 1–32.
[17] Sul Lemma di Morse, Boll. UMI-(4)-7, 1973, pp. 87–93.
[18] Cwickel, Ann. Math. 106 pp 93– (1977)
[19] Lieb, Bull. Amer. Math. Soc. 82 pp 751– (1976)
[20] Rosenbljum, Soviet Math. Dokl. 13 pp 245– (1972)
[21] Functional integration and quantum physics, Academic Press, New York, 1979. · Zbl 0434.28013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.