Goodman, Jonathan B.; LeVeque, Randall J. A geometric approach to high resolution TVD schemes. (English) Zbl 0645.65051 SIAM J. Numer. Anal. 25, No. 2, 268-284 (1988). In solving hyperbolic conservation laws of the form \(u_ t+f(u)_ x=0\), it is desirable to have a method that is at least second-order accurate in smooth regions of the flow and that also gives sharp resolution of discontinuities with no spurious oscillations. The geometric approach, similar to D. van Leer’s MUSCL schemes [J. Comput. Phys. 23, 263-275 (1977; Zbl 0339.76039) and Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s method, ibid. 32, 101-136 (1979)], is used to construct a second order accurate generalization of Godunov’s method for solving scalar conservation laws. By making suitable approximations a scheme which is easy to implement is obtained. The entropy condition is investigated from the standpoint of the spreading of rarefaction waves. For Godunov’s method the quantitative information is obtained concerning the rate of spreading which explains the kinks in rarefaction waves often observed at the sonic point. Reviewer: J.Vaníček Cited in 1 ReviewCited in 22 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 35L65 Hyperbolic conservation laws 76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics Keywords:hyperbolic conservation laws; sharp resolution of discontinuities; Godunov’s method; entropy condition; rarefaction waves Citations:Zbl 0339.76039 PDF BibTeX XML Cite \textit{J. B. Goodman} and \textit{R. J. LeVeque}, SIAM J. Numer. Anal. 25, No. 2, 268--284 (1988; Zbl 0645.65051) Full Text: DOI Link OpenURL