×

Hypersurfaces in projective schemes and a moving lemma. (English) Zbl 1432.14002

Summary: Let \(X/S\) be a quasi-projective morphism over an affine base. We develop in this article a technique for proving the existence of closed subschemes \(H/S\) of \(X/S\) with various favorable properties. We offer several applications of this technique, including the existence of finite quasi-sections in certain projective morphisms, and the existence of hypersurfaces in \(X/S\) containing a given closed subscheme \(C\) and intersecting properly a closed set \(F\).
Assume now that the base \(S\) is the spectrum of a ring \(R\) such that for any finite morphism \(Z\to S\), \(\mathrm{Pic}(Z)\) is a torsion group. This condition is satisfied if \(R\) is the ring of integers of a number field or the ring of functions of a smooth affine curve over a finite field. We prove in this context a moving lemma pertaining to horizontal 1-cycles on a regular scheme \(X\) quasi-projective and flat over \(S\). We also show the existence of a finite surjective \(S\)-morphism to \(\mathbb{P}_S^d\) for any scheme \(X\) projective over \(S\) when \(X/S\) has all its fibers of a fixed dimension \(d\).

MSC:

14A15 Schemes and morphisms
14C25 Algebraic cycles
14D06 Fibrations, degenerations in algebraic geometry
14D10 Arithmetic ground fields (finite, local, global) and families or fibrations
14G40 Arithmetic varieties and schemes; Arakelov theory; heights

References:

[1] S. Abhyankar, On the valuations centered in a local domain , Amer. J. Math. 78 (1956), 321-348. · Zbl 0074.26301 · doi:10.2307/2372519
[2] A. Altman and S. Kleiman, Introduction to Grothendieck Duality Theory , Lecture Notes in Math. 146 , Springer, New York, 1970. · Zbl 0215.37201 · doi:10.1007/BFb0060932
[3] S. Anantharaman, Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension \(1\) , Bull. Soc. Math. France Mém. 33 (1973), 5-79. · Zbl 0286.14001
[4] M. Artin, “Algebraic spaces” in A James K. Whittemore Lecture in Mathematics given at Yale University, 1969 . Yale Math. Monogr. 3 , Yale Univ. Press, New Haven, Conn, 1971. · Zbl 0226.14001
[5] A. Bialynicki-Birula, J. Browkin, and A. Schinzel, On the representation of fields as finite unions of subfields , Colloq. Math. 7 (1959), 31-32. · Zbl 0099.26302
[6] S. Bosch, W. Lütkebohmert, and M. Raynaud, Néron Models , Ergeb. Math. 3 , Springer, Berlin, 1990. · Zbl 0705.14001
[7] N. Bourbaki, Commutative Algebra: Chapters 1-7 , translated from the French, reprint of the 1989 English translation. Elem. of Math. Springer, Berlin, 1998.
[8] K. Buzzard, Smooth proper scheme over Z, available at (accessed 5 January 2015).
[9] C. Chevalley, Sur la théorie des variétés algébriques , Nagoya Math. J. 8 (1955), 1-43.
[10] T. Chinburg, G. Pappas, and M. J. Taylor, Finite morphisms from curves over Dedekind rings to \({\mathbb{P}}^{1}\) , preprint, [math.AG]. arXiv:0902.2039v2
[11] T. Chinburg, L. Moret-Bailly, G. Pappas, and M. J. Taylor, Finite morphisms to projective space and capacity theory , preprint, [math.AG]. arXiv:1201.0678v2 · Zbl 1454.14020
[12] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus , Inst. Hautes Études Sci. Publ. Math. 36 (1969), 75-109. · Zbl 0181.48803 · doi:10.1007/BF02684599
[13] L. van den Dries and A. Macintyre, The logic of Rumely’s local-global principle , J. Reine Angew. Math. 407 (1990), 33-56. · Zbl 0703.13021
[14] A. de Jong and F. Oort, On extending families of curves , J. Algebraic Geom. 6 (1997), 545-562. · Zbl 0922.14017
[15] A. de Jong and M. Pikaart, “Moduli of curves with non-abelian level structure” in The Moduli Space of Curves (Texel Island, 1994) , Progr. Math. 129 , Birkhäuser Boston, 1995, 483-509. · Zbl 0860.14024 · doi:10.1007/978-1-4612-4264-2_18
[16] S. Diaz and D. Harbater, Strong Bertini theorems , Trans. Amer. Math. Soc. 324 (1991), 73-86. · Zbl 0744.14004 · doi:10.2307/2001496
[17] D. Eisenbud, Commutative Algebra: With a View Toward Algebraic Geometry , Grad. Texts in Math. 150 , Springer, New York, 1995. · Zbl 0819.13001
[18] J. Emsalem, Projectivité des schémas en courbes sur un anneau de valuation discrète , Bull. Soc. Math. France 101 (1974), 255-263. · Zbl 0286.14008
[19] D. Estes and R. Guralnick, Module equivalences: Local to global when primitive polynomials represent units , J. Algebra 77 (1982), 138-157. · Zbl 0492.13005 · doi:10.1016/0021-8693(82)90282-4
[20] D. Ferrand, Trivialisation des modules projectifs: La méthode de Kronecker , J. Pure Appl. Algebra 24 (1982), 261-264. · Zbl 0488.13011 · doi:10.1016/0022-4049(82)90043-3
[21] D. Ferrand, Conducteur, descente et pincement , Bull. Soc. Math. France 131 (2003), 553-585.
[22] G. Frey and M. Jarden, Approximation theory and the rank of abelian varieties over large algebraic fields , Proc. London Math. Soc. (3) 28 (1974), 112-128. · Zbl 0275.14021 · doi:10.1112/plms/s3-28.1.112
[23] W. Fulton, Intersection Theory , Ergeb. Math. 2 , Springer, Berlin, 1984. · Zbl 0541.14005
[24] W. Fulton and S. Lang, Riemann-Roch Algebra , Grund. Math. Wiss. 277 , Springer, New York, 1985.
[25] O. Gabber, Q. Liu, and D. Lorenzini, The index of an algebraic variety , Invent. Math. 192 (2013), 567-626. · Zbl 1268.13009 · doi:10.1007/s00222-012-0418-z
[26] I. Goldbring and M. Masdeu, Bézout domains and elliptic curves , Comm. Algebra 36 (2008), 4492-4499. · Zbl 1152.13014 · doi:10.1080/00927870802182408
[27] O. Goldman, On a special class of Dedekind domains , Topology 3 , suppl. 1 (1964), 113-118. · Zbl 0135.08005 · doi:10.1016/0040-9383(64)90009-6
[28] B. Green, Geometric families of constant reductions and the Skolem property , Trans. Amer. Math. Soc. 350 (1998), 1379-1393. · Zbl 0904.12005 · doi:10.1090/S0002-9947-98-02094-7
[29] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique , Institut Hautes Études Sci. Publ. Math. 4 (Chapter 0, 1-7, and I, 1-10), 8 (II, 1-8), 11 (Chapter 0, 8-13, and III, 1-5), 17 (III, 6-7), 20 (Chapter 0, 14-23, and IV, 1), 24 (IV, 2-7), 28 (IV, 8-15), and 32 (IV, 16-21), 1960-1967.
[30] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique, I , Grund. Math. Wiss. 166 , Springer, Berlin, 1971. · Zbl 0222.14002
[31] A. Grothendieck and M. Raynaud, Revêtements étales et groupe fondamental , Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1), Lecture Notes in Math. 224 , Springer, Berlin, 1971.
[32] R. Guralnick, D. Jaffe, W. Raskind, and R. Wiegand, On the Picard group: Torsion and the kernel induced by a faithfully flat map , J. Algebra 183 (1996), 420-455. · Zbl 0884.14003 · doi:10.1006/jabr.1996.0228
[33] R. Hartshorne, Algebraic Geometry , Grad. Texts in Math. 52 , Springer, New York, 1977.
[34] J.-P. Jouanolou, “Une suite exacte de Mayer-Vietoris en K-théorie algébrique” in Algebraic K-theory, I: Higher K-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) , Lecture Notes in Math. 341 , Springer, Berlin, 1973, 293-316.
[35] J.-P. Jouanolou, “Quelques calculs en K-Théorie des schémas” in Algebraic K-Theory, I: Higher K-Theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972 ), Lecture Notes in Math. 341 , Springer, Berlin, 1973, 317-335.
[36] J.-P. Jouanolou, Le formalisme du résultant , Adv. Math. 90 (1991), 117-263. · Zbl 0747.13007 · doi:10.1016/0001-8708(91)90031-2
[37] I. Kaplansky, Commutative Rings , Rev. ed., Univ. of Chicago Press, Chicago, 1974. · Zbl 0296.13001
[38] K. Kedlaya, More étale covers of affine spaces in positive characteristic , J. Algebraic Geom. 14 (2005), 178-192. · Zbl 1065.14020 · doi:10.1090/S1056-3911-04-00381-9
[39] S. Kleiman, Misconceptions about \(K_{X}\) , Enseign. Math. 25 (1979), 203-206.
[40] S. Kleiman and A. Altman, Bertini theorems for hypersurface sections containing a subscheme , Comm. Algebra 7 (1979), 775-790. · Zbl 0401.14002 · doi:10.1080/00927877908822375
[41] J. Kollár, Projectivity of complete moduli , J. Differential Geom. 32 (1990), 235-268. · Zbl 0684.14002
[42] W. Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, VIII: Multiplikativ abgeschlossene Systeme von endlichen Idealen , Math. Z. 48 (1943), 533-552. · Zbl 0028.00602 · doi:10.1007/BF01180033
[43] G. Laumon and L. Moret-Bailly, Champs Algébriques , Ergeb. der Math. Grenzgeb., 3. Folge, 39 , Springer, Berlin, 2000.
[44] D. Lazard, Autour de la platitude , Bull. Soc. Math. France 97 (1969), 81-128. · Zbl 0174.33301
[45] Q. Liu, Algebraic Geometry and Arithmetic Curves , Oxford Grad. Texts in Math. 6 , Oxford Univ. Press, New York, 2006.
[46] J. Milne, “Abelian varieties” in Arithmetic Geometry (Storrs, Conn., 1984) , Springer, New York, 1986, 103-150. · doi:10.1007/978-1-4613-8655-1_5
[47] S. McAdam, “Finite coverings by ideals” in Ring Theory (Oklahoma, 1973) , Lecture Notes in Pure and Appl. Math. 7 , Dekker, New York, 1974, 163-171.
[48] B. McDonald and W. Waterhouse, Projective modules over rings with many units , Proc. Amer. Math. Soc. 83 (1981), 455-458. · Zbl 0493.13003 · doi:10.2307/2044095
[49] L. Moret-Bailly, “Points entiers des variétés arithmétiques” in Séminaire de Théorie des Nombres (Paris 1985-86) , Progr. Math. 71 , Birkhäuser, Boston, 1987, 147-154. · doi:10.1007/978-1-4757-4267-1_10
[50] L. Moret-Bailly, Groupes de Picard et problèmes de Skolem, I , Ann. Sci. École Norm. Sup. (4) 22 (1989), 161-179.
[51] D. Mumford, Lectures on Curves on an Algebraic Surface , Ann. of Math. Stud. 59 , Princeton Univ. Press, Princeton, 1966. · Zbl 0187.42701 · doi:10.1515/9781400882069
[52] D. Mumford, J. Fogarty, and F. Kirwan, Geometric Invariant Theory , 3rd ed., Ergeb. Math. Grenzgebiete (2) 34 , Springer, Berlin, 1994. · Zbl 0797.14004 · doi:10.1007/978-3-642-57916-5
[53] M. P. Murthy and R. Swan, Vector bundles over affine surfaces , Invent. Math. 36 (1976), 125-165. · Zbl 0362.14006 · doi:10.1007/BF01390007
[54] M. Nagata, Local Rings , Interscience Tracts in Pure and Appl. Math. 13 , Wiley, New York, 1962.
[55] B. H. Neumann, Groups covered by permutable subsets , J. London Math. Soc. 29 (1954), 236-248. · Zbl 0055.01604 · doi:10.1112/jlms/s1-29.2.236
[56] M. Nishi, On the imbedding of a nonsingular variety in an irreducible complete intersection , Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 29 (1955), 172-187. · Zbl 0068.14801
[57] G. Pearlstein and Ch. Schnell, “The zero locus of the infinitesimal invariant” in Arithmetic and Geometry of K3 Surfaces and Calabi-Yau Threefolds , Fields Inst. Commun. 67 , Springer, New York, 2013, 589-602. · Zbl 1302.14009 · doi:10.1007/978-1-4614-6403-7_24
[58] R. Piene, Courbes sur un trait et morphismes de contraction , Math. Scand. 35 (1974), 5-15. · Zbl 0293.14009 · doi:10.7146/math.scand.a-11528
[59] B. Poonen, Bertini theorems over finite fields , Ann. of Math. (2) 160 (2004), 1099-1127. · Zbl 1084.14026 · doi:10.4007/annals.2004.160.1099
[60] B. Poonen, Smooth hypersurface sections containing a given subscheme over a finite field , Math. Res. Lett. 15 (2008), 265-271. · Zbl 1207.14047 · doi:10.4310/MRL.2008.v15.n2.a5
[61] J. Roberts, “Chow’s moving lemma,” Appendix 2 to “Motives” in Algebraic Geometry (Oslo, 1970) , Wolters-Noordhoff, Groningen, 1972, 53-82.
[62] M. Rosen, \(S\)-units and \(S\)-class group in algebraic function fields , J. Algebra 26 (1973), 98-108. · Zbl 0265.12003 · doi:10.1016/0021-8693(73)90036-7
[63] R. Rumely, Arithmetic over the ring of all algebraic integers , J. Reine Angew. Math. 368 (1986), 127-133. · Zbl 0581.14014 · doi:10.1515/crll.1986.368.127
[64] P. Samuel, About Euclidean rings , J. Algebra 19 (1971), 282-301. · Zbl 0223.13019 · doi:10.1016/0021-8693(71)90110-4
[65] S. Schröer, On non-projective normal surfaces , Manuscripta Math. 100 (1999), 317-321. · Zbl 0987.14031 · doi:10.1007/s002290050203
[66] E. Sernesi, Deformations of algebraic schemes , Grund. Math. Wiss 334 , Springer, Berlin, 2006. · Zbl 1102.14001 · doi:10.1007/978-3-540-30615-3
[67] J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle , Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, fasc. 2, exp. 23, Secrétariat mathématique, Paris.
[68] J.-P. Serre, “Lettre à M. Tsfasman,” in Journées Arithmétiques (Luminy, 1989) , Astérisque 198-200 (1991), 351-353.
[69] H. Sumihiro, A theorem on splitting of algebraic bundles and its applications , Hiroshima Math. J. 12 (1982), 435-452. · Zbl 0507.14007
[70] R. Swan, Vector bundles and projective modules , Trans. Amer. Math. Soc. 105 (1962), 264-277. · Zbl 0109.41601 · doi:10.2307/1993627
[71] I. Swanson and C. Huneke, Integral Closure of Ideals, Rings, and Modules , Lond. Math. Soc. Lecture Note Ser. 336 , Cambridge Univ. Press, Cambridge, 2006. · Zbl 1117.13001
[72] R. Swan and J. Towber, A class of projective modules which are nearly free , J. Algebra 36 (1975), 427-434. · Zbl 0322.13009 · doi:10.1016/0021-8693(75)90143-X
[73] A. Tamagawa, Unramified Skolem problems and unramified arithmetic Bertini theorems in positive characteristic , Doc. Math. Extra Vol. (2003), 789-831. · Zbl 1101.14306
[74] A. Thorup, “Rational equivalence theory on arbitrary Noetherian schemes” in Enumerative Geometry (Sitges, 1987) , Lecture Notes in Math. 1436 , Springer, Berlin, 1990, 256-297. · Zbl 0757.14002 · doi:10.1007/BFb0084049
[75] W. van der Kallen, The \(K_{2}\) of rings with many units , Ann. Sci. École Norm. Sup. (4) 10 (1977), 473-515. · Zbl 0393.18012 · doi:10.24033/asens.1334
[76] R. M. W. Wood, Polynomial maps of affine quadrics , Bull. Lond. Math. Soc. 25 (1993), 491-497. · Zbl 0798.57013 · doi:10.1112/blms/25.5.491
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.