×

zbMATH — the first resource for mathematics

Anomalous dissipation for \(1/5\)-Hölder Euler flows. (English) Zbl 1330.35303
The authors consider the incompressible Euler equations, and study the celebrated Onsager conjecture. The conjecture states that (i) if the solution has a Hölder exponent \(\theta\) satisfying \(\theta >1/3\), then the energy integral of the solution is conserved, and (ii) if it satisfies \(\theta >1/3\), then the energy is not necessarily conserved. The authors study the latter statement, and discuss about the Hölder exponent. They consider the case \(\theta <1/5\) on a three-dimensional torus \(\mathbf{T}\times \mathbf{T}\times\mathbf{T}\), which means to consider periodic soluitons. They prove that for any positive smooth function \(e(t)\) there exists a solution of the incompressible Euler equations whose energy integral is equal to this function. This means that the Onsager conjecture for this case is true.
They use iteration for \(q=1,2,3,\cdots\) At each step \(q\), they construct a triple \((v_q ,p_q ,R_q )\) consisting of velocity \(v_q\), pressure \(p_q\), and the Reynolds stress \(R_q\) which satisfy the following Euler Reynolds system: \[ \partial_t v_q +\roman{div}\!\;(v_q \otimes v_q )+\nabla p_q =\roman{div}\!\;R_q ,\;\roman{div}\!\;v_q =0 . \] The iteration proceeds so that \((v_q ,p_q , R_q )\rightarrow (v,p,0)\) in the Hölder space when \(q\rightarrow \infty\), and \(\int|v_q |^2 dx\) converges to a given function \(e(t)\). Technical parts are collected in the appendix, which makes this article more accessible.

MSC:
35Q31 Euler equations
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. Buckmaster, ”Onsager’s conjecture almost everywhere in time,” Comm. Math. Phys., vol. 333, p. 24, 2015. · Zbl 1308.35184
[2] A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, ”Energy conservation and Onsager’s conjecture for the Euler equations,” Nonlinearity, vol. 21, iss. 6, pp. 1233-1252, 2008. · Zbl 1138.76020
[3] P. Constantin, W. E, and E. S. Titi, ”Onsager’s conjecture on the energy conservation for solutions of Euler’s equation,” Comm. Math. Phys., vol. 165, iss. 1, pp. 207-209, 1994. · Zbl 0818.35085
[4] S. Conti, C. De Lellis, and L. relax Székelyhidi Jr., ”\(h\)-principle and rigidity for \(C^{1,\alpha}\) isometric embeddings,” in Nonlinear Partial Differential Equations, New York: Springer-Verlag, 2012, vol. 7, pp. 83-116. · Zbl 1255.53038
[5] R. Courant, K. Friedrichs, and H. Lewy, ”On the partial difference equations of mathematical physics,” IBM J. Res. Develop., vol. 11, pp. 215-234, 1967. · Zbl 0145.40402
[6] S. Daneri, ”Cauchy problem for dissipative Hölder solutions to the incompressible Euler equations,” Comm. Math. Phys., vol. 329, iss. 2, p. 745, 2014. · Zbl 1298.35140
[7] C. De Lellis and L. Székelyhidi Jr., ”The Euler equations as a differential inclusion,” Ann. of Math., vol. 170, iss. 3, pp. 1417-1436, 2009. · Zbl 1350.35146
[8] C. De Lellis and L. Székelyhidi Jr., ”On admissibility criteria for weak solutions of the Euler equations,” Arch. Ration. Mech. Anal., vol. 195, iss. 1, pp. 225-260, 2010. · Zbl 1192.35138
[9] C. De Lellis and L. Székelyhidi Jr., Dissipative Euler flows and Onsager’s conjecture. · Zbl 1307.35205
[10] C. De Lellis and L. Székelyhidi Jr., ”The \(h\)-principle and the equations of fluid dynamics,” Bull. Amer. Math. Soc., vol. 49, iss. 3, pp. 347-375, 2012. · Zbl 1254.35180
[11] C. De Lellis and L. Székelyhidi Jr., ”Dissipative continuous Euler flows,” Invent. Math., vol. 193, iss. 2, pp. 377-407, 2013. · Zbl 1280.35103
[12] J. Duchon and R. Robert, ”Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations,” Nonlinearity, vol. 13, iss. 1, pp. 249-255, 2000. · Zbl 1009.35062
[13] G. L. Eyink, ”Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer,” Phys. D, vol. 78, iss. 3-4, pp. 222-240, 1994. · Zbl 0817.76011
[14] G. L. Eyink and K. R. Sreenivasan, ”Onsager and the theory of hydrodynamic turbulence,” Rev. Modern Phys., vol. 78, iss. 1, pp. 87-135, 2006. · Zbl 1205.01032
[15] U. Frisch, Turbulence, Cambridge: Cambridge Univ. Press, 1995. · Zbl 0832.76001
[16] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, New York: Springer-Verlag, 2001. · Zbl 1042.35002
[17] M. Gromov, Partial Differential Relations, New York: Springer-Verlag, 1986, vol. 9. · Zbl 0651.53001
[18] P. Isett, Hölder continuous Euler flows in three dimensions with compact support in time, 2012. · Zbl 1367.35001
[19] A. N. Kolmogorov, ”The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Proc. Roy. Soc. London Ser. A, vol. 434, iss. 1890, pp. 9-13, 1991. · Zbl 1142.76389
[20] J. Nash, ”\(C^1\) isometric imbeddings,” Ann. of Math., vol. 60, pp. 383-396, 1954. · Zbl 0058.37703
[21] L. Onsager, ”Statistical hydrodynamics,” Nuovo Cimento, vol. 6, iss. Supplemento, 2(Convegno Internazionale di Meccanica Statistica), pp. 279-287, 1949.
[22] R. Robert, ”Statistical hydrodynamics (Onsager revisited),” in Handbook of Mathematical Fluid Dynamics, Vol. II, Amsterdam: North-Holland, 2003, pp. 1-54. · Zbl 1141.76330
[23] V. Scheffer, ”An inviscid flow with compact support in space-time,” J. Geom. Anal., vol. 3, iss. 4, pp. 343-401, 1993. · Zbl 0836.76017
[24] A. Shnirelman, ”Weak solutions with decreasing energy of incompressible Euler equations,” Comm. Math. Phys., vol. 210, iss. 3, pp. 541-603, 2000. · Zbl 1011.35107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.