×

Bipolarity in argumentation graphs: towards a better understanding. (English) Zbl 1316.68152

Summary: Different abstract argumentation frameworks have been used for various applications within multi-agents systems. Among them, bipolar frameworks make use of both attack and support relations between arguments. However, there is no single interpretation of the support, and the handling of bipolarity cannot avoid a deeper analysis of the notion of support.
In this paper we consider three recent proposals for specializing the support relation in abstract argumentation: the deductive support, the necessary support and the evidential support. These proposals have been developed independently within different frameworks. We restate these proposals in a common setting, which enables us to undertake a comparative study of the modellings obtained for the three variants of the support. We highlight relationships and differences between these variants, namely a kind of duality between the deductive and the necessary interpretations of the support.

MSC:

68T27 Logic in artificial intelligence

Software:

AFRA
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] I. Rahwan, G. Simari, Argumentation in Artificial Intelligence, Springer, 2009.
[2] Prakken, H.; Vreeswijk, G., Logics for defeasible argumentation, (Handbook of Philosophical Logic, vol. 4, (2002), Kluwer Academic), 218-319 · Zbl 1003.03503
[3] S. Heras, J. Jordán, V. Botti, V. Julián, Argue to agree: a case-based argumentation approach, International Journal of Approximate Reasoning 54 (2012) 82-108. · Zbl 1272.68401
[4] L. Amgoud, S. Vesic, A formal analysis of the role of argumentation in negotiation dialogues, Journal of Logic and Computation, doi:10.1093/logcom/exr037. · Zbl 1280.68260
[5] Amgoud, L.; Devred, C.; Lagasquie-Schiex, M., Generating possible intentions with constrained argumentation systems, International Journal of Approximate reasoning, 52, 1363-1391, (2011) · Zbl 1242.68322
[6] Efstathiou, V.; Hunter, A., Algorithms for generating arguments and counterarguments in proposition logic, International Journal of Approximate Reasoning, 52, 672-704, (2011) · Zbl 1252.68273
[7] Dung, P. M., On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, Artificial Intelligence, 77, 321-357, (1995) · Zbl 1013.68556
[8] Amgoud, L.; Cayrol, C., A reasoning model based on the production of acceptable arguments, Annals of Mathematics and Artificial Intelligence, 34, 197-216, (2002) · Zbl 1002.68172
[9] Bench-Capon, T., Persuasion in practical argument using value-based argumentation frameworks, Journal of Logic and Computation, 13, 3, 429-448, (2003) · Zbl 1043.03026
[10] Kaci, S.; van der Torre, L., Preference-based argumentation: arguments supporting multiple values, International Journal of Approximate Reasoning, 48, 730-751, (2007) · Zbl 1184.68512
[11] P.E. Dunne, A. Hunter, P. McBurney, S. Parsons, M. Wooldridge, Inconsistency tolerance in weighted argument systems, in: Proceedings of AAMAS, 2009, pp. 851-858.
[12] Modgil, S., Reasoning about preferences in argumentation frameworks, Artificial Intelligence, 173, 901-934, (2009) · Zbl 1192.68663
[13] Baroni, P.; Cerutti, F.; Giacomin, M.; Guida, G., AFRA: argumentation framework with recursive attacks, International Journal of Approximate Reasoning, 52, 19-37, (2011) · Zbl 1211.68433
[14] Cayrol, C.; Lagasquie-Schiex, M.-C., On the acceptability of arguments in bipolar argumentation frameworks, (Proceedings of ECSQARU, (2005), Springer-Verlag), 378-389 · Zbl 1122.68639
[15] Amgoud, L.; Cayrol, C.; Lagasquie-Schiex, M.-C.; Livet, P., On bipolarity in argumentation frameworks, International Journal of Intelligent Systems, 23, 1062-1093, (2008) · Zbl 1151.68049
[16] Karacapilidis, N.; Papadias, D., Computer supported argumentation and collaborative decision making: the {\schermes} system, Information systems, 26, 4, 259-277, (2001) · Zbl 0990.68603
[17] Verheij, B., Deflog: on the logical interpretation of prima facie justified assumptions, Journal of Logic in Computation, 13, 319-346, (2003) · Zbl 1032.03507
[18] Cayrol, C.; Lagasquie-Schiex, M., Bipolarity in argumentation graphs: towards a better understanding, (Benferhat, S.; Grant, J., Proceedings of SUM, LNCS, vol. 6929, (2011), Springer), 137-148
[19] Cayrol, C.; Lagasquie-Schiex, M.-C., Coalitions of arguments: a tool for handling bipolar argumentation frameworks, International Journal of Intelligent Systems, 25, 83-109, (2010) · Zbl 1185.68704
[20] Boella, G.; Gabbay, D. M.; van der Torre, L.; Villata, S., Support in abstract argumentation, (Proceedings of COMMA, (2010), IOS Press), 111-122
[21] Nouioua, F.; Risch, V., Bipolar argumentation frameworks with specialized supports, (Proceedings of ICTAI, (2010), IEEE Computer Society), 215-218
[22] Nouioua, F.; Risch, V., Argumentation frameworks with necessities, (Proceedings of SUM, (2011), Springer-Verlag), 163-176
[23] N. Oren, T.J. Norman, Semantics for evidence-based argumentation, in: Proceedings of COMMA, 2008, pp. 276-284.
[24] Oren, N.; Reed, C.; Luck, M., Moving between argumentation frameworks, (Proceedings of COMMA, (2010), IOS Press), 379-390
[25] I. Boudhar, F. Nouioua, V. Risch, Handling preferences in argumentation frameworks with necessities, in: Proceedings of ICAART, 2012.
[26] G. Brewka, S. Woltran, Abstract dialectical frameworks, in: Proceedings of KR, 2010, pp. 102-111.
[27] Prakken, H., An abstract framework for argumentation with structured arguments, Argument and Computation, 1, 2, 93-124, (2011)
[28] Cayrol, C.; Lagasquie-Schiex, M.-C., Graduality in argumentation, Journal of Artificial Intelligence Research, 23, 245-297, (2005) · Zbl 1080.68608
[29] C. Cayrol, C. Devred, M. Lagasquie-Schiex, Acceptability semantics accounting for strength of attacks in argumentation, in: Proceedings of ECAI, 2010, pp. 995-996.
[30] D.C. Martinez, A.J. Garcia, G.R. Simari, Strong and weak forms of abstract argument defense, in: Proceedings of International Conference on Computational models of arguments (COMMA), 2008, pp. 216-227.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.