×

zbMATH — the first resource for mathematics

Inconsistency-tolerant reasoning with OWL DL. (English) Zbl 1316.68155
Summary: The web ontology language (OWL) is a family of description logic based ontology languages for the semantic web and gives well defined meaning to web accessible information and services. The study of inconsistency-tolerant reasoning with description logic knowledge bases is especially important for the semantic web since knowledge is not always perfect within it. An important challenge is strengthening the inference power of inconsistency-tolerant reasoning because it is normally impossible for paraconsistent logics to obey all important properties of inference together. This paper presents a non-classical DL called quasi-classical description logic (QCDL) to tolerate inconsistency in OWL DL which is a most important sublanguage of OWL supporting those users who want the maximum expressiveness while retaining computational completeness (i.e., all conclusions are guaranteed to be computable) and decidability (i.e., all computations terminate in finite time). Instead of blocking those inference rules, we validate them conditionally and partially, under which more useful information can still be inferred when inconsistency occurs. This new non-classical DL possesses several important properties as well as its paraconsistency in DL, but it does not bring any extra complexity in worst case. Finally, a transformation-based algorithm is proposed to reduce reasoning problems in QCDL to those in DL so that existing OWL DL reasoners can be used to implement inconsistency-tolerant reasoning. Based on this algorithm, a prototype OWL DL paraconsistent reasoner called PROSE is implemented. Preliminary experiments show that PROSE produces more intuitive results for inconsistent knowledge bases than other systems in general.

MSC:
68T27 Logic in artificial intelligence
03B53 Paraconsistent logics
68T30 Knowledge representation
Software:
HermiT; KAON2; Pellet
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] (Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; Patel-Schneider, P. F., The Description Logic Handbook: Theory, Implementation, and Applications, (2003), Cambridge University Press) · Zbl 1058.68107
[2] Belnap, N. D., A useful four-valued logic, (Modern Uses of Multiple-Valued Logics, (1977)), 7-73 · Zbl 0424.03012
[3] Berners-Lee, T.; Hendler, J.; Lassila, O., The semantic web, Sci. Am., 29-37, (May 17, 2001)
[4] Bertossi, L. E.; Hunter, A.; Schaub, T., Inconsistency tolerance, Lect. Notes Comput. Sci., vol. 3300, (2005), Springer
[5] Bobillo, F.; Straccia, U., Fuzzy ontology representation using OWL 2, Int. J. Approx. Reason., 52, 7, 1073-1094, (2011)
[6] Bobillo, F.; Straccia, U., Reasoning with the finitely many-valued lukasiewicz fuzzy description logic SROIQ, Inf. Sci., 181, 4, 758-778, (2011) · Zbl 1209.68519
[7] Bobillo, F.; Straccia, U., Generalized fuzzy rough description logics, Inf. Sci., 189, 43-62, (2012) · Zbl 1247.68264
[8] Borgida, A., On the relationship between description logic and predicate logic, (Proc. of CIKMʼ94, (1994), ACM), 219-225
[9] Cerami, M.; Straccia, U., On the (un)decidability of fuzzy description logics under lukasiewicz t-norm, Inf. Sci., 227, 1-21, (2013) · Zbl 1293.68255
[10] Fang, J.; Huang, Z.; van Harmelen, F., Contrastive reasoning with inconsistent ontologies, (Proc. of WIʼ11, (2011), IEEE CS), 191-194
[11] Flouris, G.; Huang, Z.; Pan, J. Z.; Plexousakis, D.; Wache, H., Inconsistencies, negations and changes in ontologies, (Proc. of AAAIʼ06, (2006), AAAI Press)
[12] Gómez, S. A.; Chesñevar, C. I.; Simari, G. R., Reasoning with inconsistent ontologies through argumentation, Appl. Artif. Intell., 24, 1-2, 102-148, (2010)
[13] Haase, P.; van Harmelen, F.; Huang, Z.; Stuckenschmidt, H.; Sure, Y., A framework for handling inconsistency in changing ontologies, (Proc. of ISWCʼ05, Lect. Notes Comput. Sci., vol. 3729, (2005), Springer), 353-367
[14] Horridge, M.; Bechhofer, S., The OWL API: a Java API for OWL ontologies, J. Web Semant., 2, 1, 11-21, (2011)
[15] Horridge, M.; Parsia, B.; Sattler, U., Explaining inconsistencies in OWL ontologies, (Proc. of SUMʼ09, Lect. Notes Comput. Sci., vol. 5785, (2009), Springer), 124-137
[16] Horrocks, I.; Sattler, U., Ontology reasoning in the SHOQ(D) description logic, (Proc. of IJCAIʼ01, (2001), Morgan Kaufmann), 199-204
[17] Hou, H.; Wu, J., Quasi-classical semantics and tableau calculus of description logics for paraconsistent reasoning in the semantic web, (Proc. of CESʼ09, (2009), IEEE CS), 703-708
[18] Huang, Z.; van Harmelen, F.; ten Teije, A., Reasoning with inconsistent ontologies, (Proc. of IJCAIʼ05, (2005), Professional Book Center), 454-459
[19] Hunter, A., Reasoning with contradictory information using quasi-classical logic, J. Log. Comput., 10, 5, 677-703, (2000) · Zbl 0974.03030
[20] Kamide, N., Paraconsistent description logics revisited, (Proc. of DLʼ10, CEUR Workshop Proc., vol. 573, (2010))
[21] Lang, C., Four-valued logics for paraconsistent reasoning, (2006), Technische Universität Dresden, Diplomarbeit von Andreas Christian Lang
[22] Lembo, D.; Lenzerini, M.; Rosati, R.; Ruzzi, M.; Savo, D. F., Query rewriting for inconsistent DL-lite ontologies, (Proc. of RRʼ11, Lect. Notes Comput. Sci., vol. 6902, (2011), Springer), 155-169
[23] Ma, Y.; Hitzler, P.; Lin, Z., Algorithms for paraconsistent reasoning with OWL, (Proc. of ESWCʼ07, Lect. Notes Comput. Sci., vol. 4519, (2007), Springer), 399-413
[24] Maier, F.; Ma, Y.; Hitzler, P., Paraconsistent OWL and related logics, Semantic Web, (2012)
[25] Marquis, P.; Porquet, N., Computational aspects of quasi-classical entailment, J. Appl. Non-Class. Log., 11, 3-4, 295-312, (2001) · Zbl 1032.03025
[26] McGuinness, D. L.; van Harmelen, F., OWL web ontology language overview, W3C Recommendation
[27] Motik, B., KAON2 - scalable reasoning over ontologies with large data sets, ERCIM News, 2008, 72, 19-20, (2008)
[28] Mu, K.; Liu, W.; Jin, Z.; Bell, D. A., A syntax-based approach to measuring the degree of inconsistency for belief bases, Int. J. Approx. Reason., 52, 7, 978-999, (2011) · Zbl 1226.68106
[29] Nguyen, L. A.; Szalas, A., Three-valued paraconsistent reasoning for semantic web agents, (Proc. of KES-AMSTAʼ10, Lect. Notes Comput. Sci., vol. 6070, (2010), Springer), 152-162
[30] Odintsov, S. P.; Wansing, H., Inconsistency-tolerant description logic. part II: A tableau algorithm for CACL^{c}, J. Appl. Log., 6, 3, 343-360, (2008) · Zbl 1149.03023
[31] ParOWL, Paraconsistent reasoner with OWL
[32] Parsia, B.; Sirin, E.; Kalyanpur, A., Debugging OWL ontologies, (Proc. of WWWʼ05, (2005), ACM), 633-640
[33] Qi, G.; Liu, W.; Bell, D. A., A revision-based approach to handling inconsistency in description logics, Artif. Intell. Rev., 26, 1-2, 115-128, (2006)
[34] Anderson, A. R.; Belnap, N., Entailment: the logic of relevance and necessity, vol. I, (1975), Princeton University Press · Zbl 0323.02030
[35] Schlobach, S.; Cornet, R., Non-standard reasoning services for the debugging of description logic terminologies, (Proc. of IJCAIʼ03, (2003), Morgan Kaufmann), 355-362
[36] Shearer, R.; Motik, B.; Horrocks, I., Hermit: A highly-efficient OWL reasoner, (Proc. of OWLEDʼ08, CEUR Workshop Proc., vol. 432, (2008))
[37] Sirin, E.; Parsia, B.; Cuenca Grau, B.; Kalyanpur, A.; Katz, Y., Pellet: A practical OWL-DL reasoner, J. Web Semant., 5, 2, 51-53, (2007)
[38] Straccia, U., A sequent calculus for reasoning in four-valued description logics, (Proc. of TABLEAUXʼ97, Lect. Notes Comput. Sci., vol. 1227, (1997), Springer), 343-357
[39] Straccia, U., Description logics over lattices, Int. J. Uncertain. Fuzziness Knowl.-Based Syst., 14, 1, 1-16, (2006) · Zbl 1093.68107
[40] Straccia, U., Reasoning within fuzzy description logics, J. Artif. Intell. Res., 14, 137-166, (2001) · Zbl 0973.03034
[41] TONES: ontology repository, (2008), University of Manchester
[42] Tsarkov, D.; Horrocks, I., Description logic reasoner: system description, (Proc. of IJCARʼ06, Lect. Notes Comput. Sci., vol. 4130, (2006), Springer), 292-297
[43] Zhang, X.; Lin, Z., An argumentation framework for description logic ontology reasoning and management, J. Intell. Inf. Syst., 40, 3, 375-403, (2013)
[44] Zhang, X.; Lin, Z., Quasi-classical description logic, J. Mult.-Valued Log. Soft Comput., 18, 3-4, 291-327, (2012) · Zbl 1236.68233
[45] Zhang, X.; Lin, Z.; Wang, K., Towards a paradoxical description logic for the semantic web, (Proc. of FoIKSʼ10, Lect. Notes Comput. Sci., vol. 5956, (2010), Springer), 306-325
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.