×

n-complete semi-hypergroups and hypergroups. (Italian. English summary) Zbl 0646.20066

One generalizes the concept of complete semi-hypergroup (hypergroup) by means of the introduction of n-complete semi-hypergroups (hypergroups). One proves some properties and constructs some examples of n-complete semi-hypergroups and hypergroups.

MSC:

20N99 Other generalizations of groups
PDFBibTeX XMLCite
Full Text: Numdam EuDML

References:

[1] P. Corsini , Hypergroupes réguliers et hypermodules , Ann. Univ. Ferrara , XX , 121 - 135 , ( 1975 ). MR 384877 | Zbl 0308.20053 · Zbl 0308.20053
[2] P. Corsini , Sur les semi-hypergroupes , Atti Soc. Peloritana Sc. Mat. Fis. Nat. ( 1979 ). MR 847109 | Zbl 0585.20037 · Zbl 0585.20037
[3] P. Corsini , Ipergruppi Semiregolari e Regolari , Rend. Sem. Mat. Università Torino , ( 1982 ).
[4] P. Corsini , G. Romeo , Hypergroupes Complets et Groupoides , Atti del Congegno su Sistemi Binari e loro Applicazioni , Taormina ( 1978 ). Zbl 0603.20060 · Zbl 0603.20060
[5] M. Koskas , Groupoides, demi-hypergroupes et hypergroupes , J. Math. Pures et Appl. , 49 , ( 1970 ). MR 265497 | Zbl 0194.02201 · Zbl 0194.02201
[6] R. Migliorato , Una classe di semi-ipergruppi e di ipergruppi , Atti Sem. Mat, . Fis. Univ. Modena , XXXI , 123 - 141 , ( 1982 ). Zbl 0571.20072 · Zbl 0571.20072
[7] R. Migliorato , Ipergruppi totalmente regolari , Atti Sem Mat. Fis. Univ. Modena , XXXII , ( 1983 ). MR 762132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.