×

Scattering of particles by long-range magnetic fields. (English) Zbl 0646.35074

The scattering of nonrelativistic particles (either quantum mechanical or classical) by a magnetic field B is studied in any dimension \(\nu\geq 2\). \(B(x)\) is allowed to decay like \(| x|^{-3/2-\delta}\) \((\delta >0)\), as \(| x| \to \infty\). Assumptions are made about the field strengths and not about the potentials. A gauge is constructed for which the unmodified wave operators exist and are complete even though the corresponding classical motion need not be asymptotically free. The result also holds for Yang-Mills fields.

MSC:

35Q99 Partial differential equations of mathematical physics and other areas of application
81U99 Quantum scattering theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agmon, S., Ann. Scuola Norm. Sup. Pisa II, 2, 151 (1975)
[2] Avron, J.; Herbst, I.; Simon, B., Duke Math. J., 45, 847 (1978)
[3] Berthier, A. M.; Collet, P., Ann. Inst. H. Poincaré A, 26, 279 (1977)
[4] Cotta-Ramusino, P.; Krüger, W.; Schrader, R., Ann. Inst. H. Poincaré A, 31, 43 (1979)
[5] Enss, V., (Velo, G.; Wightman, A. S., Rigorous Atomic and Molecular Physics. Rigorous Atomic and Molecular Physics, Proceedings Erice, 1980 (1981), Plenum: Plenum New York), 1-69
[6] Enss, V., J. Funct. Anal., 52, 219 (1983)
[7] Enss, V., Commun. Math. Phys., 89, 245 (1983)
[8] Enss, V., (Graffi, S., Schrödinger Operators. Schrödinger Operators, Lecture Notes in Mathematics, 1159 (1985), Springer), 39-176, Berlin
[9] Herbst, I. W., Commun. Math. Phys., 35, 193 (1974)
[10] Hunziker, W., (La Vita, J. A.; Marchand, J. P., Scattering Theory in Mathematical Physics (1974), Reidel: Reidel Dordrecht)
[11] Knick, M., Streutheorie für Schrödingeroperatoren mit langreichweitigen Potentialen unter Benutzung geometrischer Methoden, Diplomarbeit (1985), Bochum
[12] Kuroda, S., J. Math. Soc. Japan, 25, 222 (1973)
[13] Perry, P. A., Scattering Theory by the Enss Method, (Mathematical Reports, 1 (1983), Harwood: Harwood Chur), Part 1 · Zbl 0529.35004
[14] Reed, M.; Simon, B., (Methods of Modern Mathematical Physics. III. Scattering Theory (1979), Academic Press: Academic Press New York) · Zbl 0405.47007
[15] Schneider, M., Asymptotische Lösung der Schrödingergleichung für langreichweitige Potentiale, Diplomarbeit (1984), Bochum
[16] Uhlenbeck, K. K., Commun. Math. Phys., 83, 11 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.