[1] |
Arrow, K. J.; Barankin, E. W.; Blackwell, D.: Admissible points of convex sets. Contribution to the theory of games, 87-91 (1953) · Zbl 0050.14203 |

[2] |
Brunelle, S.: Duality for multiple objective convex programs. Mathematics of operations research 6, 159-172 (1981) · Zbl 0497.90068 |

[3] |
Di Guglielmo, F.: Nonconvex duality in multiobjective optimization. Mathematics of operations research 2, 285-291 (1977) · Zbl 0406.90068 |

[4] |
Gros, C.: Generalization of Fenchel’s duality theorem for convex vector optimization. European journal of operational research 2, 368-376 (1978) · Zbl 0424.90068 |

[5] |
Isermann, H.: On some relations between a dual pair of multiple objective dual programs. Zeitschrift für operations research 22, 33-41 (1978) · Zbl 0375.90049 |

[6] |
Jahn, J.: Duality in vector optimization. Mathematical programming 25, 343-353 (1983) · Zbl 0497.90067 |

[7] |
Martínez-Legaz, J. E.: Exact quasiconvex conjugation. Zeitschrift für operations research 27, 257-266 (1983) · Zbl 0522.90069 |

[8] |
Martínez-Legaz, J. E.: Lexicographical order, inequality systems and optimization. Proceedings of the 11th IFIP conference on system modelling and optimization, 203-212 (1984) · Zbl 0563.90084 |

[9] |
Rödder, W.: A generalized saddlepoint theory. European journal of operational research 1, 55-59 (1977) · Zbl 0383.90099 |

[10] |
Rosinger, E. E.: Duality and alternative in multiobjective optimization. Proceedings of the American mathematical society 64, 307-312 (1977) · Zbl 0333.49030 |

[11] |
Tanino, T.; Sawaragi, Y.: Duality theory in multiobjective programming. Journal of optimization theory and applications 27, 509-529 (1979) · Zbl 0378.90100 |

[12] |
Tanino, T.; Sawaragi, Y.: Conjugate maps and duality in multiobjective optimization. Journal of optimization theory and applications 31, 473-499 (1980) · Zbl 0418.90080 |

[13] |
Tanino, T.: Saddle points and duality in multi-objective programming. International journal systems science 13, 323-335 (1982) · Zbl 0487.49021 |