A Singular web service for geometric computations. (English) Zbl 1330.68336

Summary: Outsourcing algebraic computations in dynamic geometry tools is a possible strategy used when software distribution constraints apply. If the target user machine has hardware limitations, or if the computer algebra system cannot be easily (or legally) packaged inside the geometric software, this approach can solve current shortcomings in dynamic environments.We report the design and implementation of a web service using Singular, a program specialized in ideal theory and commutative algebra. Besides its canonical address, a virtual appliance and a port to a low-cost ARM based computer are also provided. Any interactive geometric environment can then outsource computations where Singular is used, and incorporate their results into the system. In particular, we illustrate the capabilities of the web service by extending current abilities of GeoGebra to deal with algebraic loci and envelopes by means of a recent algorithm for studying parametric polynomial systems.


68U35 Computing methodologies for information systems (hypertext navigation, interfaces, decision support, etc.)
68W30 Symbolic computation and algebraic computation
Full Text: DOI Link


[1] Sutherland, I.E.: Sketchpad: A man-machine graphical communication system, Tech. Rep. 574, Computer Laboratory, University of Cambridge (2003)
[2] Gao, XS; Lin, Q, MMP/geometer - A software package for automated geometric reasoning, Lect. Notes Artif. Int., 3763, 44-66, (2006) · Zbl 1202.68378
[3] Gao, X.S., Zhang, J.Z., Chou, S.C.: Geometry Expert. Nine Chapters, Taiwan (1998)
[4] Recio, T; Vélez, MP, Automatic discovery of theorems in elementary geometry, J. Autom. Reason., 23, 63-82, (1999) · Zbl 0941.03010
[5] Botana, F; Valcarce, JL, A dynamic-symbolic interface for geometric theorem discovery, Comput. Educ., 38, 21-35, (2002)
[6] Janičić, P, Geometry constructions language, J. Autom. Reason., 44, 3-24, (2010) · Zbl 1185.68626
[7] Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2013). Accessed 27 December 2013 · Zbl 1202.68378
[8] Montes, A; Wibmer, M, Gröbner bases for polynomial systems with parameters, J. Symb. Comput., 45, 1391-1425, (2010) · Zbl 1207.13018
[9] Oracle Corporation: Java Native Interface (2013)
[10] Ancsin, G., Hohenwarter, M., Kovács, Z.: GeoGebra Goes Web. Electron. J. Math. Technol. 7(6) 412-418 (2013)
[11] Botana, F., Kovács Z., Weitzhofer, S.: Implementing theorem proving in GeoGebra by using a Singular webservice. In: Sendra, J.R., Villarino, C. (eds.) Proceedings EACA 2012, pp. 67-70. Universidad de Alcalá , Alcalá de Henares (2012) · Zbl 1202.68378
[12] Kovács, Z., Parisse, B.: Giac and GeoGebra — improved Gröbner basis computations, Special Semester on Applications of Algebra and Number Theory, Workshop 3 on Computer Algebra and Polynomials. https://www.ricam.oeaw.ac.at/specsem/specsem2013/workshop3/slides/parisse-kovacs.pdf (2013). Accessed 27 December 2013
[13] Kovács, Z.: Singular WebService. VirtualBox ISO Image. http://ggb1.idm.jku.at/kovzol/VMs/SingularWS-20140104.zip (2014). Accessed 7 January 2014 · Zbl 1390.68774
[14] Kovács, Z.: Singular WebService in GeoGebra. http://dev.geogebra.org/trac/wiki/SingularWS (2012). Accessed 27 December 2013 · Zbl 0941.03010
[15] Kovács, Z.: Singular WebService documentation and source code. http://code.google.com/p/singularws/source/browse/doc/README (2012). Accessed 27 December 2013
[16] Freundt, S., Horn, P., Konovalov, A., Linton, S., Roozemond, D.: Symbolic Computation Software Composability Protocol (SCSCP) specification, Version 1.3. (http://www.symbolic-computing.org/scscp) (2009) · Zbl 1166.68374
[17] Chen, X; Wang, D, Management of geometric knowledge in textbooks, Data Knowl. Eng., 73, 43-57, (2012)
[18] Botana, F; Abánades, MA, Automatic deduction in (dynamic) geometry: loci computation, Comp. Geom-Theor. Appl., 47, 75-89, (2014) · Zbl 1280.65021
[19] Abánades, MA; Botana, F, A dynamic symbolic geometry environment based on the gröbnercover algorithm for the computation of geometric loci and envelopes, Lect. Notes Comput. Sc., 7961, 349-353, (2013) · Zbl 1390.68774
[20] Botana, F, Interactive versus symbolic approaches to plane loci generation in dynamic geometry environments, Lect. Notes Comput. Sc., 2330, 211-218, (2002) · Zbl 1055.68580
[21] Bruce, J.W., Giblin, P.J.: Curves and Singularities. Cambridge University Press, Cambridge (1984) · Zbl 0534.58008
[22] Botana, F.: A parametric approach to 3D dynamic geometry. Math. Comput. Simulat. 104, 3-20 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.