×

Delayed feedback versus seasonal forcing: resonance phenomena in an El Niño Southern Oscillation model. (English) Zbl 1320.37038


MSC:

37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
34K18 Bifurcation theory of functional-differential equations
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
37M20 Computational methods for bifurcation problems in dynamical systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] D. S. Abbot, M. Silber, and R. T. Pierrehumbert, Bifurcations leading to summer Arctic sea ice loss, J. Geophys. Res. Atmos., 116 (2011), D19120.
[2] S.-I. Aiba and K. Kitayama, Effects of the 1997–98 El Nin͂o drought on rain forests of Mount Kinabalu, Borneo, J. Tropical Ecol., 18 (2002), pp. 215–230.
[3] K. Aihara, G. Matsumoto, and Y. Ikegaya, Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator, J. Theoret. Biol., 109 (1984), pp. 249–269.
[4] R. J. Allan, D. Chambers, W. Drosdowsky, H. Hendon, M. Latif, N. Nicholls, I. Smith, R. C. Stone, and Y. Tourre, Is there an Indian Ocean Dipole and is it Independent of the El Nin͂o-Southern Oscillation?, CLIVAR Exchanges, 6 (2001), pp. 18–22.
[5] A. Aragoneses, T. Sorrentino, S. Perrone, D. J. Gauthier, M. C. Torrent, and C. Masoller, Experimental and numerical study of the symbolic dynamics of a modulated external-cavity semiconductor laser, Optics Express, 22 (2014), pp. 4705–4713.
[6] D. G. Aronson, M. A. Chory, G. R. Hall, and R. P. McGehee, Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study, Comm. Math. Phys., 83 (1982), pp. 303–354. · Zbl 0499.70034
[7] P. Ashwin, S. Wieczorek, R. Vitolo, and P. Cox, Tipping points in open systems: Bifurcation, noise-induced and rate-dependent examples in the climate system, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 370 (2012), pp. 1166–1184.
[8] C. Baesens and R. S. MacKay, Resonances for weak coupling of the unfolding of a saddle-node periodic orbit with an oscillator, Nonlinearity, 20 (2007), pp. 1283–1298. · Zbl 1134.34022
[9] A. G. Barnston and C. F. Ropelewski, Prediction of ENSO episodes using canonical correlation analysis, J. Climate, 5 (1992), pp. 1316–1345.
[10] J. Bjerknes, Atmospheric teleconnections from the equatorial Pacific 1, Monthly Weather Rev., 97 (1969), pp. 163–172.
[11] K. Blaha, J. Lehnert, A. Keane, T. Dahms, P. Hövel, E. Schöll, and J. L. Hudson, Clustering in delay-coupled smooth and relaxational chemical oscillators, Phys. Rev. E (3), 88 (2013), 062915.
[12] H. W. Broer, Quasi-periodicity in dissipative and conservative systems, in Proceedings Symposium Henri Poincaré, Université Libre de Bruxelles, Brussels, (2004), pp. 20–21.
[13] M. A. Cane, S. E. Zebiak, and S. C. Dolan, Experimental forecasts of El Nin͂o, Nature, 321 (1986), pp. 827–832.
[14] Y. Cao, Uniqueness of periodic solution for differential delay equations, J. Differential Equations, 128 (1996), pp. 46–57. · Zbl 0853.34063
[15] P. Chang, L. Ji, B. Wang, and T. Li, Interactions between the seasonal cycle and El Nin͂o-Southern Oscillation in an intermediate coupled ocean-atmosphere model, J. Atmos. Sci., 52 (1995), pp. 2353–2372.
[16] D. Chen, M. A. Cane, A. Kaplan, S. E. Zebiak, and D. Huang, Predictability of El Nin͂o over the past \(148\) years, Nature, 428 (2004), pp. 733–736.
[17] F. H. S. Chiew, T. C. Piechota, J. A. Dracup, and T. A. McMahon, El Nin͂o/Southern Oscillation and Australian rainfall, streamflow and drought: Links and potential for forecasting, J. Hydrol., 204 (1998), pp. 138–149.
[18] S.-N. Chow and H.-O. Walther, Characteristic multipliers and stability of symmetric periodic solutions of \(\dot{x}(t)=g(x(t-1))\), Trans. Amer. Math. Soc., 307 (1988), pp. 127–142. · Zbl 0672.34069
[19] A. J. Clarke, An Introduction to the Dynamics of El Nin͂o & the Southern Oscillation, Academic Press, London, 2008.
[20] A. J. Clarke and S. Van Gorder, Improving El Nin͂o prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content, Geophys. Res. Lett., 30 (2003), 16673.
[21] D. B. Enfield and D. A. Mayer, Tropical Atlantic sea surface temperature variability and its relation to El Nin͂o-Southern Oscillation, J. Geophys. Res. Oceans, 102c (1997), pp. 929–945.
[22] K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL: A MATLAB package for bifurcation analysis of delay differential equations, TW report, Katholieke Universiteit Leuven, Leuven, Belgium, 305-306 (2000).
[23] M. Ghil and A. W. Robertson, Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy, Int. Geophys., 70 (2001), pp. 285–325.
[24] M. Ghil, I. Zaliapin, and S. Thompson, A delay differential model of ENSO variability: Parametric instability and the distribution of extremes, Nonlinear Process. Geophys., 15 (2008), pp. 417–433.
[25] A. E. Gill, Some simple solutions for heat-induced tropical circulation, Quart. J. R. Meteorol. Soc., 106 (1980), pp. 447–462.
[26] L. Glass and J. Sun, Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations, Phys. Rev. E (3), 50 (1994), pp. 5077–5084.
[27] J. A. H. Zelle, G. Appeldoorn, G. Burgers, and G. J. van Oldenborgh, The relationship between sea surface temperature and thermocline depth in the eastern equatorial Pacific, J. Phys. Oceanog., 34 (2004), pp. 643–655.
[28] M. Inoue and H. Kamifukumoto, Scenarios leading to chaos in a forced Lotka-Volterra model, Progr. Theoret. Phys., 71 (1984), pp. 930–937. · Zbl 1074.37522
[29] F.-F. Jin, An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model, J. Atmos. Sci., 54 (1997), pp. 811–829.
[30] F.-F. Jin, An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model, J. Atmos. Sci., 54 (1997), pp. 830–847.
[31] F.-F. Jin, J. D. Neelin, and M. Ghil, El Nin͂o on the devil’s staircase: Annual subharmonic steps to chaos, Science, 264 (1994), pp. 70–72.
[32] I.-S. Kang and J.-S. Kug, An El-Nin͂o pediction system using an intermediate ocean and a statistical atmosphere, Geophys. Res. Lett., 27 (2000), pp. 1167–1170.
[33] H. Kaper and H. Engler, Mathematics and Climate, SIAM, Philadelphia, 2013. · Zbl 1285.86001
[34] K. Kiyono and N. Fuchikami, Bifurcations induced by periodic forcing and taming chaos in dripping faucets, J. Phys. Soc. Japan, 71 (2002), pp. 49–55.
[35] H. Knolle, Lotka-Volterra equations with time delay and periodic forcing term, Math. Biosci., 31 (1976), pp. 351–375. · Zbl 0349.92027
[36] B. Krauskopf, Bifurcation analysis of lasers with delay, in Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers, Wiley, Chichester, UK, 2005, pp. 147–183.
[37] B. Krauskopf and J. Sieber, Bifurcation analysis of delay-induced resonances of the El-Nin͂o Southern Oscillation, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 470 (2014), 348. · Zbl 1320.86004
[38] J.-S. Kug, I.-S. Kang, and S. E. Zebiak, The impacts of the model assimilated wind stress data in the initialization of an intermediate ocean and the ENSO predictability, Geophys. Res. Lett., 28 (2001), pp. 3713–3716.
[39] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Spring-Verlag, New York, 1995. · Zbl 0829.58029
[40] Y. N. Kyrychko and K. B. Blyuss, Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate, Nonlinear Anal. Real World Appl., 6 (2005), pp. 495–507. · Zbl 1144.34374
[41] D. Lenstra and M. Yousefi, Theory of delayed optical feedback in lasers, in Fundamental Issues of Nonlinear Laser Dynamics, AIP Conf. Proc. 548, 2000, pp. 87–111.
[42] R. P. McGehee and B. B. Peckham, Resonance surfaces for forced oscillators, Exp. Math., 3 (1994), pp. 221–244. · Zbl 0822.34035
[43] H. Meijer, F. Dercole, and B. Oldeman, Numerical bifurcation analysis, in Encyclopedia of Complexity and Systems Science, Springer, New York, 2009, pp. 6329–6352.
[44] M. Münnich, M. A. Cane, and S. E. Zebiak, A study of self-excited oscillations of the tropical ocean-atmosphere system. Part II: Nonlinear cases, J. Atmos. Sci., 48 (1991), pp. 1238–1248.
[45] R. D. Nussbaum, Uniqueness and nonuniqueness for periodic solutions of \(x'(t)=-g(x(t-1))\), J. Differential Equations, 34 (1979), pp. 25–54. · Zbl 0404.34057
[46] C. M. Postlethwaite and M. Silber, Stabilizing unstable periodic orbits in the Lorenz equations using time-delayed feedback control, Phys. Rev. E (3), 76 (2007), 056214.
[47] K. Pyragas, Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170 (1992), pp. 421–428.
[48] W. H. Quinn, D. O. Zorf, K. S. Short, and R. T. W. Kao Yang, Historical trends and statistics of the Southern Oscillation, El Nin͂o, and Indonesian droughts, Fish. Bull., 76 (1978), pp. 663–678.
[49] D. Roose and R. Szalai, Continuation and bifurcation analysis of delay differential equations, in Numerical Continuation Methods for Dynamical Systems, Springer, Dordrecht, 2007, pp. 359–399. · Zbl 1132.34001
[50] S. Saha, S. Nadiga, C. Thiaw et al., The NCEP climate forecast system, J. Climate, 19 (2006), pp. 3483–3517.
[51] E. Schöll, G. Hiller, P. Hövel, and M. A. Dahlem, Time-delayed feedback in neurosystems, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 367 (2009), pp. 1079–1096. · Zbl 1185.34108
[52] P. S. Schopf and M. J. Suarez, Vacillations in a coupled ocean-atmosphere model, J. Atmos. Sci., 45 (1988), pp. 549–566.
[53] L. F. Shampine and S. Thompson, Solving DDEs in MATLAB, Appl. Numer. Math., 37 (2001), pp. 441–458. · Zbl 0983.65079
[54] J. Sieber, K. Engelborghs, T. Luzyanina, G. Samaey, and D. Roose, DDE-BIFTOOL Manual—Bifurcation analysis of delay differential equations, arXiv:1406.7144, 2014.
[55] J. Simonet, M. Warden, and E. Brun, Locking and Arnold tongues in an infinite-dimensional system: The nuclear magnetic resonance laser with delayed feedback, Phys. Rev. E (3), 50 (1994), pp. 3383–3391.
[56] S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology and Chemistry, Perseus Publishing, Cambridge, MA, 2001.
[57] M. J. Suarez and P. S. Schopf, A delayed action oscillator for ENSO, J. Atmos. Sci., 45 (1988), pp. 3283–3287.
[58] J. M. T. Thompson and J. Sieber, Predicting climate tipping as a noisy bifurcation: A review, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21 (2011), pp. 399–423. · Zbl 1210.86007
[59] E. Tziperman, M. A. Cane, and S. E. Zebiak, Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos, J. Atmos. Sci., 52 (1995), pp. 293–306.
[60] E. Tziperman, M. A. Cane, S. E. Zebiak, Y. Xue, and B. Blumenthal, Locking of El Nin͂o’s peak time to the end of the calendar year in the delayed oscillator picture of ENSO, J. Climate, 11 (1998), pp. 2191–2199.
[61] E. Tziperman, L. Stone, M. A. Cane, and H. Jarosh, El Nin͂o chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator, Science, 264 (1994), pp. 72–74.
[62] R. Vitolo, H. Broer, and C. Simó, Quasi-periodic bifurcations of invariant circles in low-dimensional dissipative dynamical systems, Regul. Chaotic Dyn., 16 (2011), pp. 154–184. · Zbl 1225.37087
[63] Y. Wang, Z. Ma, J. Shen, Z. Liu, and L. Chen, Periodic oscillation in delayed gene networks with SUM regulatory logic and small perturbations, Math. Biosci., 220 (2009), pp. 34–44. · Zbl 1169.92020
[64] S. Yanchuk and P. Perlikowski, Delay and periodicity, Phys. Rev. E (3), 79 (2009), 046221.
[65] I. Zaliapin and M. Ghil, A delay differential model of ENSO variability-part 2: Phase locking, multiple solutions and dynamics of extrema, Nonlinear Process. Geophys., 17 (2010), pp. 123–135.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.