×

Robust multi-image processing with optimal sparse regularization. (English) Zbl 1330.68333

Summary: Sparse modeling can be used to characterize outlier type noise. Thanks to sparse recovery theory, it was shown that 1-norm super-resolution is robust to outliers if enough images are captured. Moreover, sparse modeling of signals is a way to overcome ill-posedness of under-determined problems. This naturally leads to this question: does an added sparsity assumption on the signal improve the robustness to outliers of the 1-norm super-resolution, and if yes, how strong should this assumption be? In this article, we review and extend results of the literature to the robustness to outliers of overdetermined signal recovery problems under sparse regularization, with a convex variational formulation. We then apply them to general random matrices, and show how the regularization parameter acts on the robustness to outliers. Finally, we show that in the case of multi-image processing, the structure of the support of signal and noise must be studied precisely. We show that the sparsity assumption improves robustness if outliers do not overlap with signal jumps, and determine how the regularization parameter can be chosen.

MSC:

68U10 Computing methodologies for image processing
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI HAL

References:

[1] Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through convex optimization. Stat. Sci. 27(4), 450-468 (2012). doi:10.1214/12-sts394 · Zbl 1331.90050
[2] Benoit, L., Mairal, J., Bach, F., Ponce, J.: Sparse image representation with epitomes. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2913-2920. IEEE (2011). doi:10.1109/cvpr.2011.5995636
[3] Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Prob. 23(3), 969-985 (2007). doi:10.1088/0266-5611/23/3/008 · Zbl 1120.94005
[4] Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C.R. Math. 346(9-10), 589-592 (2008). doi:10.1016/j.crma.2008.03.014 · Zbl 1153.94002
[5] Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203-4215 (2005). doi:10.1109/TIT.2005.858979 · Zbl 1264.94121
[6] Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406-5425 (2006). doi:10.1109/TIT.2006.885507 · Zbl 1309.94033
[7] Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489-509 (2006a). doi:10.1109/TIT.2005.862083 · Zbl 1231.94017
[8] Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207-1223 (2006b). doi:10.1002/cpa.20124 · Zbl 1098.94009
[9] Champagnat, F., Le Besnerais, G., Kulcsár, C.: Statistical performance modeling for superresolution: a discrete data-continuous reconstruction framework. J. Opt. Soc. Am. A 26(7), 1730-1746 (2009). doi:10.1364/JOSAA.26.001730
[10] Cohen, A., Dahmen, W., DeVore, R.: Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22(1), 211-231 (2009) · Zbl 1206.94008
[11] Daubechies, I., DeVore, R., Fornasier, M., Güntürk, C.S.: Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63(1), 1-38 (2010). doi:10.1002/cpa.20303 · Zbl 1202.65046
[12] Delbracio, M., Almansa, A., Morel, J.M., Musé, P.: Subpixel point spread function estimation from two photographs at different distances. SIAM J. Imaging Sci. 5(4), 1234-1260 (2012). doi:10.1137/110848335 · Zbl 1255.68226
[13] Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845-2862 (2001). doi:10.1109/18.959265 · Zbl 1019.94503
[14] Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Inf. Theory 15(12), 3736-3745 (2006). doi:10.1109/tip.2006.881969
[15] Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 14(2), 47-57 (2004a). doi:10.1002/ima.20007
[16] Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE Trans. Inf. Theory 13(10), 1327-1344 (2004). doi:10.1109/TIP.2004.834669 · Zbl 1062.14065
[17] Geiger, D., Liu, T.L., Donahue, M.: Sparse representations for image decompositions. Int. J. Comput. Vision 33(2), 139-156 (1999). doi:10.1023/a
[18] He, Y., Yap, K.H., Chen, L., Chau, L.P.: A nonlinear least square technique for simultaneous image registration and super-resolution. IEEE Trans. Inf. Theory 16(11), 2830-2841 (2007). doi:10.1109/TIP.2007.908074
[19] Jenatton, R., Audibert, J.Y., Bach, F.: Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12, 2777-2824 (2011) · Zbl 1280.68170
[20] Kuppinger, P., Durisi, G., Bolcskei, H.: Uncertainty relations and sparse signal recovery for pairs of general signal sets. IEEE Trans. Inf. Theory 58(1), 263-277 (2012). doi:10.1109/tit.2011.2167215 · Zbl 1365.94061
[21] Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2272-2279. IEEE (2009) doi:10.1109/ICCV.2009.5459452
[22] Mallat, S., Yu, G.: Super-resolution with sparse mixing estimators. IEEE Trans. Image Process. 19(11), 2889-2900 (2010). doi:10.1109/TIP.2010.2049927 · Zbl 1371.94252
[23] Marquina, A., Osher, S.: Image super-resolution by TV-regularization and bregman iteration. J. Sci. Comput. 37(3), 367-382 (2008). doi:10.1007/s10915-008-9214-8 · Zbl 1203.94014
[24] Milanfar, P.: Super-resolution Imaging, vol. 1. CRC Press, Boca Raton (2010)
[25] Mitra, K., Veeraraghavan, A., Chellappa, R.: Analysis of sparse regularization based robust regression approaches. IEEE Trans. Signal Process. 61(5), 1249-1257 (2013). doi:10.1109/tsp.2012.2229992 · Zbl 1320.92089
[26] Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vision 20(1-2), 99-120 (2004). doi:10.1023/B:JMIV.0000011326.88682.e5 · Zbl 1366.94052
[27] Ning, Q., Chen, K., Yi, L., Fan, C., Lu, Y., Wen, J.: Image super-resolution via analysis sparse prior. IEEE Signal Process. Lett. 20(4), 399-402 (2013). doi:10.1109/lsp.2013.2242198
[28] Studer, C., Baraniuk, R.G.: Stable restoration and separation of approximately sparse signals. Appl. Comput. Harmon. Anal. (2013). doi:10.1016/j.acha.2013.08.006 · Zbl 1336.94025
[29] Studer, C., Kuppinger, P., Pope, G., Bolcskei, H.: Recovery of sparsely corrupted signals. IEEE Trans. Inf. Theory 58(5), 3115-3130 (2012). doi:10.1109/tit.2011.2179701 · Zbl 1365.94185
[30] Tartavel, G., Gousseau, Y., & Peyré, G.: Constrained sparse texture synthesis. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 186-197. Springer, Berlin (2013). doi:10.1007/978-3-642-38267-3_16. · Zbl 1373.94471
[31] Tian, J., Ma, K.K.: A survey on super-resolution imaging. SIViP 5(3), 329-342 (2011). doi:10.1007/s11760-010-0204-6
[32] Traonmilin, Y., Ladjal, S., Almansa, A.: On the amount of regularization for super-resolution interpolation. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 380-384. IEEE (2012)
[33] Traonmilin, Y., Ladjal, S., Almansa, A.: Outlier removal power of the L1-norm super-resolution. In: Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 198-209. Springer, Berlin ( 2013). doi:10.1007/978-3-642-38267-3_17
[34] Vaiter, S., Deledalle, C.A., Peyré, G., Dossal, C., Fadili, J.: Local behavior of sparse analysis regularization: applications to risk estimation. Appl. Comput. Harmon. Anal. (2012). doi:10.1016/j.acha.2012.11.006 · Zbl 1291.65189
[35] Yap, K.H., He, Y., Tian, Y., Chau, L.P.: A nonlinear -norm approach for joint image registration and super-resolution. IEEE Signal Process. Lett. 16(11), 981-984 (2009). doi:10.1109/LSP.2009.2028106
[36] Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481-2499 (2012). doi:10.1109/tip.2011.2176743 · Zbl 1373.94471
[37] Yu, N., Qiu, T., Ren, F.: Denoising for multiple image copies through joint sparse representation. J. Math. Imaging Vision 45(1), 46-54 (2013). doi:10.1007/s10851-012-0343-1 · Zbl 1316.94018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.