zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Köthe-Toeplitz duals of some new sequence spaces and their matrix maps. (English) Zbl 0647.46006
For a sequence $x=(x\sb n)$, define $\Delta x=(x\sb k-x\sb{k+1})$. Using this $\Delta$ x, Kizmaz defined the sequence spaces $\ell\sb{\infty}(\Delta)$, c($\Delta)$ and $c\sb 0(\Delta)$ as follows: $$ \ell\sb{\infty}(\Delta)=\{x=(x\sb k)\vert \quad \Delta x\in \ell\sb{\infty}\}, $$ $$ c(\Delta)=\{x=(x\sb k)\vert \quad \Delta x\in c\}, $$ $$ c\sb 0(\Delta)=\{x=(x\sb k)\vert \quad \Delta x\in c\sb 0\}. $$ If E is any one of the above spaces, we have $E\subset \Delta E$. The aim of the present paper is to extend the above sequence spaces to the sequence spaces of Maddox and Simons by considering a sequence $p=(p\sb k)$ of strictly positive numbers. For example if c(p) is the Maddox sequence space of convergent sequences, the author considers $\Delta c(p)=\{x=(x\sb k)\vert\Delta$ $x\in c(p)\}.$ Introducing the spaces $\ell\sb{\infty}(p)$, c(p) and $c\sb 0(p)$, the author finds the first and second Köthe-Toeplitz duals of $\Delta \ell\sb{\infty}(p)$ and asserts $\Delta \ell\sb{\infty}(p)$ is perfect if and only if $p\in \ell\sb{\infty}$. The necessary and sufficient conditions for an infinite matrix to transform $\ell\sb p$ to c($\Delta)$, $\Delta \ell\sb{\infty}(p)$ to $\ell\sb{\infty}$ and $\Delta \ell\sb{\infty}(p)$ to c are obtained.
Reviewer: D.Somasundaram

46A45Sequence spaces
40C05Matrix methods in summability
47B37Operators on special spaces (weighted shifts, operators on sequence spaces, etc.)
Full Text: EuDML