zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The foundations of confounding in epidemiology. (English) Zbl 0647.62093
According to the authors, a statistically coherent view on confounding is presented. Confounding by a covariate C in the presence of data on C is distinguished from confounding in the absence of data on C. A covariate C is defined to be a nonconfounder in the absence of data on C if the parameter of interest can be asymptotically unbiasedly estimated absent data on C. When data on C are available, C is defined to be a nonconfounder for a parameter of interest if inference on that parameter does not depend on data through C. A related, and by the present authors often quoted paper is {\it O. S. Miettinen} and {\it E. F. Cook}, Confounding: essence and detection. Am. J. Epidemiol. 114, 593-603 (1981).
Reviewer: G.Broström

MSC:
62P10Applications of statistics to biology and medical sciences
92D25Population dynamics (general)
WorldCat.org
Full Text: DOI
References:
[1] Miettinen, O. S.; Cook, E. F.: Confounding: essense and detection. Am. J. Epidemiol. 114, 593-603 (1981)
[2] Day, N. E.; Byar, D. P.; Green, S. B.: Overadjustment in case-control studies. Am. J. Epidemiol. 112, 696-706 (1980)
[3] Breslow, N. E.; Day, N. E.: Statistical methods in cancer research. Int. agency on cancer publ. (1980)
[4] Buehler, R. J.: Rejoinder. J. Am. statis. Ass.. 77, 593-594 (1982)
[5] Efron, B.; Hinkley, D. V.: Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information. Biometrika 65, 657-687 (1978) · Zbl 0401.62002
[6] Barndorff-Nielsen, O.: Information and exponential families in statistical theory. (1978) · Zbl 0387.62011
[7] Greenland, S.; Robins, J. M.: Identifiability, exchangeability, and epidemiological confounding. Int. J. Epidemiol. 15, 413-419 (1986)
[8] Definetti, B.: Probability, induction, and statistics. (1972)
[9] Copaz, J. B.: Randomization models for the matched and unmatched 2 x 2 tables. Biometrika 60, 467-476 (1973) · Zbl 0275.62048
[10] Miettinen, O. S.: Components of the crude risk ratio. Am. J. Epidemiol. 96, 168-172 (1972)
[11] Klienbaum, D. G.; Kupper, L. L.; Morgenstern, H.: Epidemiologic research. (1982)
[12] Neutra, R. R.; Drolette, M. E.: Estimating exposure-specific disease rates from case-control studies using Bayes theorem. Am. J. Epidemiol. 108, 214-222 (1978)
[13] Miettinen, O. S.: Estimability adn extimation in case-referent studies. Am. J. Epidemiol. 103, 226-235 (1976)
[14] Prentice, R. L.; Breslow, N. E.: Retrospective studies and failure time models. Biometrika 65, 153-158 (1978) · Zbl 0377.92014
[15] Greenland, S.; Neutra, R.: Control of confounding in the assessment of medical technology. Int. J. Epidemiol. 9, 361-367 (1980)
[16] Rothman, K. J.: Epidemiologic methods in clinical trials. Cancer 39, 1771-1775 (1977)
[17] Robins, J. M.; Greenland, S.: The role of model selection in causal inference from nonexperimental data. Am. J. Epidemiol. 123, 392-402 (1986)
[18] Baker, R. J.; Neider, J. A.: The GLIM system: release 3. (1978)
[19] Fisher, R. A.: Two new properties of mathematical likelihood. Proc. R. Soc. A. 144, 285-307 (1934) · Zbl 0009.21902
[20] Cox, D. R.; Hinkley, D. V.: Theoretical statistic. 38 (1974) · Zbl 0334.62003
[21] Breslow, N. E.: Odds ratio estimator when the data are sparse. Biometrika 68, 73-84 (1981) · Zbl 0461.62031
[22] Efron, B.: Bootstrap methods: another look at the jacknife. Am. statist. 7, 1-26 (1979) · Zbl 0406.62024
[23] Edwards, A. W. F.: Likelihood. (1972) · Zbl 0231.62005
[24] Dawid, A. P.: On the concepts of sufficiency and ancillarity in the presence of nuisance parameter. J.R. stat. Soc. B 37, 248-258 (1975) · Zbl 0321.62009
[25] Robins, J. M.: Another approach to causal inference in mortality studies with a sustained exposure period--application to control of the healthy worker survivor effect. Mathl modelling 7, 1393-1512 (1986) · Zbl 0614.62136
[26] Barndorff-Nielsen, O.: Nonformation. Biometrika 63, 567-571 (1976) · Zbl 0352.62009
[27] Whittemore, A. S.: Collapsibility of multidimensional contingency tables. Jl R. Stat soc B 40, 328-340 (1978) · Zbl 0413.62041
[28] Shapiro, S. H.: Collapsing contingency tables--a geometric approach. Am. statist. 36, 43-46 (1981)
[29] Barndorff-Nielsen, O.: Conditionality resolutions. Biometrika 67, 239-310 (1980) · Zbl 0434.62005
[30] Amari, S.: Geometrical theory of asymptotic ancillarity and conditional inference. Biometrika 69, 1-19 (1982) · Zbl 0484.62046
[31] Sprott, D. A.: Comments on a paper by B. Efron D.V. Hinkleybiometrika. Biometrika 65, 485-486 (1981)
[32] Nelder, J.; Wedderburn, R.: Generalized linear models. Jl R. Stat. soc. A 135, 370-384 (1972)
[33] Sen, P. K.: Aymptotic properties of maximum likelihood estimators based on conditional specification. A. statist. 7, 1019-1033 (1979) · Zbl 0413.62020
[34] Lindsay, B.: Nuisance parametersw, mixture models and the efficiency of partial likelihood estimators. Phil. trans. R. soc. A 296, 639-665 (1980) · Zbl 0434.62028