Zähle, Henryk Qualitative robustness of statistical functionals under strong mixing. (English) Zbl 1388.62071 Bernoulli 21, No. 3, 1412-1434 (2015). Summary: A new concept of (asymptotic) qualitative robustness for plug-in estimators based on identically distributed possibly dependent observations is introduced, and it is shown that Hampel’s theorem for general metrics \(d\) still holds. Since Hampel’s theorem assumes the UGC property w.r.t. \(d\), that is, convergence in probability of the empirical probability measure to the true marginal distribution w.r.t. \(d\) uniformly in the class of all admissible laws on the sample path space, this property is shown for a large class of strongly mixing laws for three different metrics \(d\). For real-valued observations, the UGC property is established for both the Kolomogorov \(\phi\)-metric and the Lévy \(\psi\)-metric, and for observations in a general locally compact and second countable Hausdorff space the UGC property is established for a certain metric generating the \(\psi\)-weak topology. The key is a new uniform weak LLN for strongly mixing random variables. The latter is of independent interest and relies on Rio’s maximal inequality. Cited in 1 ReviewCited in 6 Documents MSC: 62F35 Robustness and adaptive procedures (parametric inference) 62G35 Nonparametric robustness 60F05 Central limit and other weak theorems Keywords:\(\psi\)-weak topology; function bracket; Hampel’s theorem; Kolmogorov \(\varphi\)-metric; Lévy \(\psi\)-metric; locally compact and second countable Hausdorff space; plug-in estimator; qualitative robustness; Rio’s maximal inequality; strong mixing; uniform Glivenko-Cantelli theorem; uniform weak law of large numbers PDFBibTeX XMLCite \textit{H. Zähle}, Bernoulli 21, No. 3, 1412--1434 (2015; Zbl 1388.62071) Full Text: DOI arXiv Euclid References: [1] Bauer, H. (2001). Measure and Integration Theory. de Gruyter Studies in Mathematics 26 . Berlin: de Gruyter. · Zbl 0985.28001 [2] Beutner, E. and Zähle, H. (2014). Continuous mapping approach to the asymptotics of \(U\)- and \(V\)-statistics. Bernoulli 20 846-877. · Zbl 1303.60019 · doi:10.3150/13-BEJ508 [3] Boente, G., Fraiman, R. and Yohai, V.J. (1987). Qualitative robustness for stochastic processes. Ann. Statist. 15 1293-1312. · Zbl 0644.62037 · doi:10.1214/aos/1176350506 [4] Bradley, R.C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probab. Surv. 2 107-144. · Zbl 1189.60077 · doi:10.1214/154957805100000104 [5] Bradley, R.C. (2007). Introduction to Strong Mixing Conditions. Vol. 1. Heber City, UT: Kendrick Press. · Zbl 1134.60004 [6] Brockwell, P.J. and Davis, R.A. (2006). Time Series : Theory and Methods. Springer Series in Statistics . New York: Springer. [7] Bustos, O.H. (1981). Qualitative Robustness for General Processes. Informes de Matemática , Série B- 002 / 81. Rio de Janeiro: Instituto de Matemática Pura e Aplicada. [8] Christmann, A., Salibían-Barrera, M. and Van Aelst, S. (2011). On the stability of bootstrap estimators. Available at . arXiv:1111.1876 [9] Chung, K.L. (1951). The strong law of large numbers. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability 1950 341-352. Berkeley and Los Angeles: Univ. California Press. [10] Cox, D. (1981). Metrics on stochastic processes and qualitative robustness. Technical Report 3, Dept. Statistics, Univ. Washington. [11] Cuevas, A. (1988). Qualitative robustness in abstract inference. J. Statist. Plann. Inference 18 277-289. · Zbl 0658.62046 · doi:10.1016/0378-3758(88)90105-X [12] Cuevas, A. and Romo, J. (1993). On robustness properties of bootstrap approximations. J. Statist. Plann. Inference 37 181-191. · Zbl 0787.62047 · doi:10.1016/0378-3758(93)90087-M [13] Doukhan, P. (1994). Mixing : Properties and Examples. Lecture Notes in Statistics 85 . New York: Springer. · Zbl 0801.60027 [14] Föllmer, H. and Schied, A. (2004). Stochastic Finance. An Introduction in Discrete Time. de Gruyter Studies in Mathematics 27 . Berlin: de Gruyter. · Zbl 1126.91028 [15] Gorodetskii, V.V. (1977). On the strong mixing property for linear processes. Theory Probab. Appl. 22 411-413. [16] Hampel, F.R. (1968). Contributions to the theory of robust estimation. Ph.D. thesis, Univ. California, Berkeley. [17] Hampel, F.R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42 1887-1896. · Zbl 0229.62041 · doi:10.1214/aoms/1177693054 [18] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J. and Stahel, W.A. (1986). Robust Statistics. The Approach Based on Influence Functions. Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics . New York: Wiley. · Zbl 0593.62027 [19] Huber, P.J. (1981). Robust Statistics. Wiley Series in Probability and Mathematical Statistics . New York: Wiley. · Zbl 0536.62025 [20] Huber, P.J. and Ronchetti, E.M. (2009). Robust Statistics , 2nd ed. Wiley Series in Probability and Statistics . Hoboken, NJ: Wiley. · Zbl 1276.62022 · doi:10.1002/9780470434697 [21] Krätschmer, V., Schied, A. and Zähle, H. (2012). Qualitative and infinitesimal robustness of tail-dependent statistical functionals. J. Multivariate Anal. 103 35-47. · Zbl 1236.62043 · doi:10.1016/j.jmva.2011.06.005 [22] Krätschmer, V., Schied, A. and Zähle, H. (2014). Comparative and qualitative robustness for law-invariant risk measures. Finance Stoch. 18 271-295. · Zbl 1298.91195 · doi:10.1007/s00780-013-0225-4 [23] Mattila, P. (1995). Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics 44 . Cambridge: Cambridge Univ. Press. · Zbl 0819.28004 [24] Mizera, I. (2010). Qualitative robustness and weak continuity: The extreme unction? In Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis : A Festschrift in Honor of Professor Jana Jurečková. Inst. Math. Stat. Collect. 7 169-181. Beachwood, OH: IMS. [25] Papantoni-Kazakos, P. and Gray, R.M. (1979). Robustness of estimators on stationary observations. Ann. Probab. 7 989-1002. · Zbl 0426.62021 · doi:10.1214/aop/1176994892 [26] Pham, T.D. and Tran, L.T. (1985). Some mixing properties of time series models. Stochastic Process. Appl. 19 297-303. · Zbl 0564.62068 · doi:10.1016/0304-4149(85)90031-6 [27] Rieder, H. (1994). Robust Asymptotic Statistics. Springer Series in Statistics . New York: Springer. · Zbl 0927.62050 [28] Rio, E. (1995). A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws. Ann. Probab. 23 918-937. · Zbl 0836.60026 · doi:10.1214/aop/1176988295 [29] Rosenblatt, M. (1956). A central limit theorem and a mixing condition. Proc. Natl. Acad. Sci. USA 42 43-47. · Zbl 0070.13804 · doi:10.1073/pnas.42.1.43 [30] Shorack, G.R. (2000). Probability for Statisticians. Springer Texts in Statistics . New York: Springer. · Zbl 0951.62005 · doi:10.1007/b98901 [31] Shorack, G.R. and Wellner, J.A. (1986). Empirical Processes with Applications to Statistics. Wiley Series in Probability and Mathematical Statistics : Probability and Mathematical Statistics . New York: Wiley. · Zbl 1170.62365 [32] Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36 423-439. · Zbl 0135.18701 · doi:10.1214/aoms/1177700153 [33] van der Vaart, A.W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge: Cambridge Univ. Press. · Zbl 0910.62001 · doi:10.1017/CBO9780511802256 [34] van der Vaart, A.W. and Wellner, J.A. (1996). Weak Convergence and Empirical Processes. With Applications to Statistics. Springer Series in Statistics . New York: Springer. · Zbl 0862.60002 [35] Wiener, N. (1933). The Fourier Integral and Certain of Its Applications . Cambridge: Cambridge Univ. Press. · Zbl 0006.05401 [36] Withers, C.S. (1981). Conditions for linear processes to be strong-mixing. Z. Wahrsch. Verw. Gebiete 57 477-480. · Zbl 0465.60032 · doi:10.1007/BF01025869 [37] Yosida, K. (1995). Functional Analysis. Classics in Mathematics . Berlin: Springer. · Zbl 0152.32102 [38] Zähle, H. (2014). Marcinkiewicz-Zygmund strong laws for statistical functionals and empirical distribution functions. Statistics . · Zbl 1367.60024 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.